Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -9,6 +9,7 @@ import time
|
|
9 |
|
10 |
# Function to process the uploaded PDF and save it temporarily
|
11 |
def process_pdf(file):
|
|
|
12 |
with tempfile.NamedTemporaryFile(delete=False, suffix=".pdf") as tmpfile:
|
13 |
tmpfile.write(file.read()) # Write the uploaded file's content to the temp file
|
14 |
tmpfile_path = tmpfile.name # Get the temporary file path
|
@@ -16,17 +17,27 @@ def process_pdf(file):
|
|
16 |
|
17 |
# Function to extract text from the PDF
|
18 |
def extract_text_from_pdf(pdf_path):
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
text
|
23 |
-
|
|
|
|
|
|
|
|
|
|
|
24 |
|
25 |
# Function to chunk text into smaller sections
|
26 |
def chunk_text(text, chunk_size=200):
|
27 |
-
|
28 |
-
|
29 |
-
|
|
|
|
|
|
|
|
|
|
|
30 |
|
31 |
# Main function to run the Streamlit app
|
32 |
def main():
|
@@ -40,16 +51,23 @@ def main():
|
|
40 |
tmp_file_path = process_pdf(uploaded_file)
|
41 |
|
42 |
# Extract text from the uploaded PDF
|
43 |
-
st.write("Extracting text from the PDF...")
|
44 |
pdf_text = extract_text_from_pdf(tmp_file_path)
|
45 |
|
|
|
|
|
|
|
|
|
46 |
# Initialize Sentence-Transformer model for embeddings
|
|
|
47 |
model = SentenceTransformer('all-MiniLM-L6-v2')
|
48 |
|
49 |
# Chunk text into smaller sections for embedding generation
|
50 |
-
st.write("Chunking text for embedding generation...")
|
51 |
text_chunks = chunk_text(pdf_text, chunk_size=200)
|
52 |
|
|
|
|
|
|
|
|
|
53 |
# Generate embeddings with a progress bar
|
54 |
st.write("Generating embeddings...")
|
55 |
progress_bar = st.progress(0)
|
@@ -73,9 +91,4 @@ def main():
|
|
73 |
query_embedding = model.encode([query], convert_to_numpy=True)
|
74 |
|
75 |
# Perform similarity search using FAISS
|
76 |
-
st.write("Searching
|
77 |
-
start_time = time.time()
|
78 |
-
D, I = index.search(query_embedding, k=5)
|
79 |
-
end_time = time.time()
|
80 |
-
|
81 |
-
# Display the res
|
|
|
9 |
|
10 |
# Function to process the uploaded PDF and save it temporarily
|
11 |
def process_pdf(file):
|
12 |
+
st.write("Processing uploaded PDF...")
|
13 |
with tempfile.NamedTemporaryFile(delete=False, suffix=".pdf") as tmpfile:
|
14 |
tmpfile.write(file.read()) # Write the uploaded file's content to the temp file
|
15 |
tmpfile_path = tmpfile.name # Get the temporary file path
|
|
|
17 |
|
18 |
# Function to extract text from the PDF
|
19 |
def extract_text_from_pdf(pdf_path):
|
20 |
+
try:
|
21 |
+
st.write("Extracting text from the PDF...")
|
22 |
+
reader = PdfReader(pdf_path)
|
23 |
+
text = ""
|
24 |
+
for page in reader.pages:
|
25 |
+
text += page.extract_text()
|
26 |
+
return text
|
27 |
+
except Exception as e:
|
28 |
+
st.error(f"Error extracting text from PDF: {e}")
|
29 |
+
return ""
|
30 |
|
31 |
# Function to chunk text into smaller sections
|
32 |
def chunk_text(text, chunk_size=200):
|
33 |
+
try:
|
34 |
+
st.write("Chunking text into smaller sections...")
|
35 |
+
words = text.split()
|
36 |
+
chunks = [" ".join(words[i:i + chunk_size]) for i in range(0, len(words), chunk_size)]
|
37 |
+
return chunks
|
38 |
+
except Exception as e:
|
39 |
+
st.error(f"Error chunking text: {e}")
|
40 |
+
return []
|
41 |
|
42 |
# Main function to run the Streamlit app
|
43 |
def main():
|
|
|
51 |
tmp_file_path = process_pdf(uploaded_file)
|
52 |
|
53 |
# Extract text from the uploaded PDF
|
|
|
54 |
pdf_text = extract_text_from_pdf(tmp_file_path)
|
55 |
|
56 |
+
if not pdf_text:
|
57 |
+
st.error("No text extracted from the PDF. Please upload a valid file.")
|
58 |
+
return
|
59 |
+
|
60 |
# Initialize Sentence-Transformer model for embeddings
|
61 |
+
st.write("Loading embedding model...")
|
62 |
model = SentenceTransformer('all-MiniLM-L6-v2')
|
63 |
|
64 |
# Chunk text into smaller sections for embedding generation
|
|
|
65 |
text_chunks = chunk_text(pdf_text, chunk_size=200)
|
66 |
|
67 |
+
if not text_chunks:
|
68 |
+
st.error("Failed to split text into chunks. Exiting.")
|
69 |
+
return
|
70 |
+
|
71 |
# Generate embeddings with a progress bar
|
72 |
st.write("Generating embeddings...")
|
73 |
progress_bar = st.progress(0)
|
|
|
91 |
query_embedding = model.encode([query], convert_to_numpy=True)
|
92 |
|
93 |
# Perform similarity search using FAISS
|
94 |
+
st.write("Searching.
|
|
|
|
|
|
|
|
|
|