Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -3,16 +3,21 @@ import os
|
|
3 |
from langchain.vectorstores import FAISS
|
4 |
from langchain.embeddings import OpenAIEmbeddings
|
5 |
from langchain.document_loaders import PyPDFLoader
|
6 |
-
from langchain.chains import RetrievalQA
|
7 |
from groq import Groq
|
8 |
|
9 |
-
# Set
|
10 |
GROQ_API_KEY = "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"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
|
12 |
# Initialize Groq client
|
13 |
def initialize_groq_client():
|
14 |
"""Initialize the Groq client with the API key."""
|
15 |
-
os.environ["GROQ_API_KEY"] = GROQ_API_KEY
|
16 |
return Groq(api_key=GROQ_API_KEY)
|
17 |
|
18 |
# Generate response using Groq API
|
@@ -39,7 +44,7 @@ def process_pdf(pdf_path):
|
|
39 |
# Create FAISS vector database
|
40 |
def create_vector_db(documents):
|
41 |
"""Create a FAISS vector database from documents."""
|
42 |
-
embeddings = OpenAIEmbeddings() # Use OpenAI
|
43 |
vector_db = FAISS.from_documents(documents, embeddings)
|
44 |
return vector_db
|
45 |
|
@@ -62,25 +67,24 @@ def main():
|
|
62 |
documents = process_pdf("uploaded_act.pdf")
|
63 |
st.success("PDF Loaded and Processed Successfully!")
|
64 |
|
65 |
-
# Initialize Groq
|
66 |
-
|
67 |
-
|
68 |
-
st.success("Groq Client Initialized Successfully!")
|
69 |
-
|
70 |
-
# Build Vector DB and QA Chain
|
71 |
-
vector_db = create_vector_db(documents)
|
72 |
-
retriever, client = build_rag_pipeline(vector_db, groq_client)
|
73 |
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
with st.spinner("Fetching Answer..."):
|
78 |
-
response = generate_response(client, query)
|
79 |
-
st.write("### Answer:")
|
80 |
-
st.write(response)
|
81 |
|
82 |
-
|
83 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
84 |
|
85 |
if __name__ == "__main__":
|
86 |
main()
|
|
|
3 |
from langchain.vectorstores import FAISS
|
4 |
from langchain.embeddings import OpenAIEmbeddings
|
5 |
from langchain.document_loaders import PyPDFLoader
|
|
|
6 |
from groq import Groq
|
7 |
|
8 |
+
# Set API Keys (Use your provided keys)
|
9 |
GROQ_API_KEY = "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"
|
10 |
+
OPENAI_API_KEY = "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"
|
11 |
+
|
12 |
+
# Initialize API Keys
|
13 |
+
def initialize_keys():
|
14 |
+
"""Set environment variables for API keys."""
|
15 |
+
os.environ["GROQ_API_KEY"] = GROQ_API_KEY
|
16 |
+
os.environ["OPENAI_API_KEY"] = OPENAI_API_KEY
|
17 |
|
18 |
# Initialize Groq client
|
19 |
def initialize_groq_client():
|
20 |
"""Initialize the Groq client with the API key."""
|
|
|
21 |
return Groq(api_key=GROQ_API_KEY)
|
22 |
|
23 |
# Generate response using Groq API
|
|
|
44 |
# Create FAISS vector database
|
45 |
def create_vector_db(documents):
|
46 |
"""Create a FAISS vector database from documents."""
|
47 |
+
embeddings = OpenAIEmbeddings(openai_api_key=OPENAI_API_KEY) # Use OpenAI API key
|
48 |
vector_db = FAISS.from_documents(documents, embeddings)
|
49 |
return vector_db
|
50 |
|
|
|
67 |
documents = process_pdf("uploaded_act.pdf")
|
68 |
st.success("PDF Loaded and Processed Successfully!")
|
69 |
|
70 |
+
# Initialize Groq client
|
71 |
+
initialize_keys()
|
72 |
+
groq_client = initialize_groq_client()
|
|
|
|
|
|
|
|
|
|
|
73 |
|
74 |
+
# Step 2: Build Vector DB and QA Chain
|
75 |
+
vector_db = create_vector_db(documents)
|
76 |
+
retriever, groq_client = build_rag_pipeline(vector_db, groq_client)
|
|
|
|
|
|
|
|
|
77 |
|
78 |
+
# Step 3: Ask Questions
|
79 |
+
query = st.text_input("Ask a question:")
|
80 |
+
if query:
|
81 |
+
with st.spinner("Fetching Answer..."):
|
82 |
+
# Use Groq API to generate answer
|
83 |
+
answer = generate_response(groq_client, query)
|
84 |
+
|
85 |
+
# Display Answer
|
86 |
+
st.write("### Answer:")
|
87 |
+
st.write(answer)
|
88 |
|
89 |
if __name__ == "__main__":
|
90 |
main()
|