Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,87 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
from langchain.vectorstores import FAISS
|
| 3 |
+
from langchain.embeddings import OpenAIEmbeddings
|
| 4 |
+
from langchain.document_loaders import PyPDFLoader
|
| 5 |
+
from langchain.llms import HuggingFacePipeline
|
| 6 |
+
from langchain.chains import RetrievalQA
|
| 7 |
+
import groqapi
|
| 8 |
+
|
| 9 |
+
# Step 1: Initialize Groq API and Llama Model
|
| 10 |
+
def load_llama_model(api_key, model_name):
|
| 11 |
+
"""Load the Llama model using Groq API."""
|
| 12 |
+
groqapi.set_api_key(api_key)
|
| 13 |
+
return HuggingFacePipeline.from_pretrained(model_name)
|
| 14 |
+
|
| 15 |
+
# Step 2: Load and Process PDF
|
| 16 |
+
def process_pdf(pdf_path):
|
| 17 |
+
"""Load and split the PDF into documents."""
|
| 18 |
+
loader = PyPDFLoader(pdf_path)
|
| 19 |
+
documents = loader.load_and_split()
|
| 20 |
+
return documents
|
| 21 |
+
|
| 22 |
+
# Step 3: Create Vector Database
|
| 23 |
+
def create_vector_db(documents):
|
| 24 |
+
"""Create a FAISS vector database from documents."""
|
| 25 |
+
embeddings = OpenAIEmbeddings() # Use OpenAI embeddings for vectorization
|
| 26 |
+
vector_db = FAISS.from_documents(documents, embeddings)
|
| 27 |
+
return vector_db
|
| 28 |
+
|
| 29 |
+
# Step 4: Build RAG Pipeline
|
| 30 |
+
def build_rag_pipeline(vector_db, llama_model):
|
| 31 |
+
"""Build the Retrieval-Augmented Generation (RAG) pipeline."""
|
| 32 |
+
retriever = vector_db.as_retriever(search_type="similarity", search_kwargs={"k": 5})
|
| 33 |
+
qa_chain = RetrievalQA.from_chain_type(
|
| 34 |
+
retriever=retriever,
|
| 35 |
+
llm=llama_model,
|
| 36 |
+
return_source_documents=True
|
| 37 |
+
)
|
| 38 |
+
return qa_chain
|
| 39 |
+
|
| 40 |
+
# Streamlit App
|
| 41 |
+
def main():
|
| 42 |
+
st.title("KP Universities Act 2016 - Query App")
|
| 43 |
+
st.write("Ask any question about the KP Universities Act 2016.")
|
| 44 |
+
|
| 45 |
+
# Step 1: Upload PDF
|
| 46 |
+
uploaded_pdf = st.file_uploader("Upload the KP Universities Act 2016 PDF", type="pdf")
|
| 47 |
+
if uploaded_pdf:
|
| 48 |
+
with open("uploaded_act.pdf", "wb") as f:
|
| 49 |
+
f.write(uploaded_pdf.read())
|
| 50 |
+
documents = process_pdf("uploaded_act.pdf")
|
| 51 |
+
st.success("PDF Loaded and Processed Successfully!")
|
| 52 |
+
|
| 53 |
+
# Step 2: Input Groq API Key
|
| 54 |
+
api_key = st.text_input("Enter your Groq API Key", type="password")
|
| 55 |
+
model_name = "llama-3.1-8b-instant"
|
| 56 |
+
|
| 57 |
+
if api_key and st.button("Load Llama Model"):
|
| 58 |
+
try:
|
| 59 |
+
# Load Llama Model
|
| 60 |
+
llama_model = load_llama_model(api_key, model_name)
|
| 61 |
+
st.success("Llama Model Loaded Successfully!")
|
| 62 |
+
|
| 63 |
+
# Build Vector DB and QA Chain
|
| 64 |
+
vector_db = create_vector_db(documents)
|
| 65 |
+
qa_chain = build_rag_pipeline(vector_db, llama_model)
|
| 66 |
+
|
| 67 |
+
# Step 3: Ask Questions
|
| 68 |
+
query = st.text_input("Ask a question:")
|
| 69 |
+
if query:
|
| 70 |
+
with st.spinner("Fetching Answer..."):
|
| 71 |
+
response = qa_chain({"query": query})
|
| 72 |
+
answer = response["result"]
|
| 73 |
+
source_docs = response["source_documents"]
|
| 74 |
+
|
| 75 |
+
# Display Answer and Sources
|
| 76 |
+
st.write("### Answer:")
|
| 77 |
+
st.write(answer)
|
| 78 |
+
|
| 79 |
+
st.write("### Sources:")
|
| 80 |
+
for doc in source_docs:
|
| 81 |
+
st.write(f"Source: {doc.metadata.get('source', 'Unknown')}")
|
| 82 |
+
|
| 83 |
+
except Exception as e:
|
| 84 |
+
st.error(f"Error loading model or processing query: {e}")
|
| 85 |
+
|
| 86 |
+
if __name__ == "__main__":
|
| 87 |
+
main()
|