Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,78 +1,60 @@
|
|
1 |
import os
|
2 |
import streamlit as st
|
|
|
3 |
from groq import Groq
|
4 |
-
from langchain.
|
5 |
from langchain.vectorstores import FAISS
|
6 |
from langchain.document_loaders import PyPDFLoader
|
7 |
-
from langchain.
|
8 |
-
from langchain.llms import OpenAI
|
9 |
-
from langchain.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
|
11 |
-
#
|
12 |
-
|
13 |
-
def __init__(self, api_key: str):
|
14 |
-
self.client = Groq(api_key=api_key)
|
15 |
|
16 |
-
|
17 |
-
embeddings = []
|
18 |
-
for text in texts:
|
19 |
-
response = self.client.embeddings.create(input=text)
|
20 |
-
embeddings.append(response['data'])
|
21 |
-
return embeddings
|
22 |
|
23 |
-
#
|
24 |
-
|
25 |
loader = PyPDFLoader(uploaded_file)
|
26 |
documents = loader.load()
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
#
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
answer = qa_chain.run(input_documents=results, question=query)
|
48 |
-
return answer
|
49 |
-
|
50 |
-
# Streamlit UI setup
|
51 |
-
def main():
|
52 |
-
st.title("Document Upload and Question Answering")
|
53 |
-
|
54 |
-
# Upload PDF file
|
55 |
-
uploaded_file = st.file_uploader("Choose a PDF file", type=["pdf"])
|
56 |
-
if uploaded_file:
|
57 |
-
st.write("File uploaded successfully!")
|
58 |
-
|
59 |
-
try:
|
60 |
-
# Load documents from the uploaded PDF
|
61 |
-
documents = load_documents(uploaded_file)
|
62 |
-
|
63 |
-
# Create a vector DB using Groq embeddings
|
64 |
-
vector_db = create_vector_db(documents)
|
65 |
-
|
66 |
-
# User query for Q&A
|
67 |
-
query = st.text_input("Ask a question based on the uploaded document:")
|
68 |
-
|
69 |
-
if query:
|
70 |
-
# Get the answer for the query
|
71 |
-
answer = perform_qa(vector_db, query)
|
72 |
-
st.write("Answer:", answer)
|
73 |
-
|
74 |
-
except Exception as e:
|
75 |
-
st.error(f"Error loading client or processing query: {e}")
|
76 |
|
77 |
-
if __name__ == "__main__":
|
78 |
-
main()
|
|
|
1 |
import os
|
2 |
import streamlit as st
|
3 |
+
from langchain.embeddings import Embedding
|
4 |
from groq import Groq
|
5 |
+
from langchain.chains import RetrievalQA
|
6 |
from langchain.vectorstores import FAISS
|
7 |
from langchain.document_loaders import PyPDFLoader
|
8 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
9 |
+
from langchain.llms import OpenAI
|
10 |
+
from langchain.agents import initialize_agent
|
11 |
+
from langchain.agents import Tool
|
12 |
+
|
13 |
+
# Set up Groq API
|
14 |
+
groq_client = Groq(api_key=os.getenv("GROQ_API_KEY"))
|
15 |
+
|
16 |
+
# Define a custom embedding class for Groq
|
17 |
+
class GroqEmbedding(Embedding):
|
18 |
+
def __init__(self, model="groq-embedding-model", api_key=None):
|
19 |
+
self.model = model
|
20 |
+
self.client = Groq(api_key=api_key or os.getenv("GROQ_API_KEY"))
|
21 |
+
|
22 |
+
def embed_documents(self, texts):
|
23 |
+
# Use Groq's API to generate embeddings
|
24 |
+
embeddings = self.client.embed_documents(texts, model=self.model)
|
25 |
+
return embeddings
|
26 |
+
|
27 |
+
def embed_query(self, query):
|
28 |
+
# Use Groq's API to generate query embedding
|
29 |
+
return self.client.embed_query(query, model=self.model)
|
30 |
|
31 |
+
# Streamlit App UI
|
32 |
+
st.title("PDF Question-Answering with Groq Embeddings")
|
|
|
|
|
33 |
|
34 |
+
uploaded_file = st.file_uploader("Upload a PDF", type="pdf")
|
|
|
|
|
|
|
|
|
|
|
35 |
|
36 |
+
# Process the uploaded PDF
|
37 |
+
if uploaded_file is not None:
|
38 |
loader = PyPDFLoader(uploaded_file)
|
39 |
documents = loader.load()
|
40 |
+
|
41 |
+
# Split documents into smaller chunks for better processing
|
42 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
|
43 |
+
split_docs = text_splitter.split_documents(documents)
|
44 |
+
|
45 |
+
# Create embeddings using Groq
|
46 |
+
embeddings = GroqEmbedding(api_key=os.getenv("GROQ_API_KEY"))
|
47 |
+
|
48 |
+
# Create a FAISS vector store
|
49 |
+
vector_db = FAISS.from_documents(split_docs, embeddings)
|
50 |
+
|
51 |
+
# Initialize the retrieval-based QA system
|
52 |
+
qa = RetrievalQA.from_chain_type(llm=OpenAI(), chain_type="stuff", vectorstore=vector_db)
|
53 |
+
|
54 |
+
# User input for querying the PDF content
|
55 |
+
query = st.text_input("Ask a question about the PDF:")
|
56 |
+
|
57 |
+
if query:
|
58 |
+
result = qa.run(query)
|
59 |
+
st.write("Answer:", result)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
60 |
|
|
|
|