import streamlit as st import numpy as np import cv2 from PIL import Image # Set the page config st.set_page_config(page_title="Emotion Recognition App", layout="centered") st.title("Emotion Recognition App") # Upload an image uploaded_file = st.file_uploader("Upload an image", type=["jpg", "jpeg", "png"]) # Load OpenCV's pre-trained face detection model face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + "haarcascade_frontalface_default.xml") # Define a simple emotion detection function def detect_emotion(face): """ Mock function to assign a random emotion. Replace with an actual emotion detection model. """ return "Happy" # Replace with your logic # Resize image to reduce memory usage def resize_image(image, max_size=(800, 800)): """ Resizes the image to the specified maximum size while maintaining aspect ratio. """ image.thumbnail(max_size, Image.Resampling.LANCZOS) return image # Process the uploaded image if uploaded_file is not None: # Check file size to prevent loading large images if uploaded_file.size > 10 * 1024 * 1024: # 10 MB limit st.error("File too large. Please upload an image smaller than 10 MB.") else: # Open and resize the image image = Image.open(uploaded_file) image = resize_image(image) # Convert image to numpy array image_np = np.array(image) # Convert image to grayscale for face detection gray_image = cv2.cvtColor(image_np, cv2.COLOR_RGB2GRAY) # Detect faces faces = face_cascade.detectMultiScale(gray_image, scaleFactor=1.1, minNeighbors=5, minSize=(30, 30)) if len(faces) > 0: for (x, y, w, h) in faces: # Draw rectangle around the face cv2.rectangle(image_np, (x, y), (x+w, y+h), (0, 255, 0), 2) # Assign a dummy emotion emotion = detect_emotion(None) # Display emotion above the face cv2.putText( image_np, emotion, (x, y - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.9, (255, 0, 0), 2, ) # Display the processed image st.image(image_np, caption="Processed Image", use_column_width=True) else: st.warning("No faces detected in the image.")