import streamlit as st import cv2 import numpy as np from PIL import Image from fer import FER # Set the page config st.set_page_config(page_title="Emotion Recognition App", layout="centered") st.title("Emotion Recognition App") # Upload an image uploaded_file = st.file_uploader("Upload an image", type=["jpg", "jpeg", "png"]) # Load FER emotion detection model emotion_detector = FER(mtcnn=True) # Use MTCNN for better face detection # Resize image to reduce memory usage def resize_image(image, max_size=(800, 800)): """ Resizes the image to the specified maximum size while maintaining aspect ratio. """ image.thumbnail(max_size, Image.Resampling.LANCZOS) return image # Process the uploaded image if uploaded_file is not None: # Check file size to prevent loading large images if uploaded_file.size > 10 * 1024 * 1024: # 10 MB limit st.error("File too large. Please upload an image smaller than 10 MB.") else: # Open and resize the image image = Image.open(uploaded_file) image = resize_image(image) # Convert image to numpy array image_np = np.array(image) # Detect emotions results = emotion_detector.detect_emotions(image_np) if results: for face in results: # Get bounding box and detected emotion box = face["box"] emotions = face["emotions"] dominant_emotion = max(emotions, key=emotions.get) # Draw a rectangle around the face x, y, w, h = box cv2.rectangle(image_np, (x, y), (x+w, y+h), (0, 255, 0), 2) # Display detected emotion cv2.putText( image_np, dominant_emotion, (x, y - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.9, (255, 0, 0), 2, ) # Display the processed image st.image(image_np, caption="Processed Image", use_column_width=True) else: st.warning("No faces detected or unable to determine emotions.")