Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,7 +1,8 @@
|
|
1 |
import streamlit as st
|
2 |
-
import numpy as np
|
3 |
import cv2
|
|
|
4 |
from PIL import Image
|
|
|
5 |
|
6 |
# Set the page config
|
7 |
st.set_page_config(page_title="Emotion Recognition App", layout="centered")
|
@@ -11,16 +12,8 @@ st.title("Emotion Recognition App")
|
|
11 |
# Upload an image
|
12 |
uploaded_file = st.file_uploader("Upload an image", type=["jpg", "jpeg", "png"])
|
13 |
|
14 |
-
# Load
|
15 |
-
|
16 |
-
|
17 |
-
# Define a simple emotion detection function
|
18 |
-
def detect_emotion(face):
|
19 |
-
"""
|
20 |
-
Mock function to assign a random emotion.
|
21 |
-
Replace with an actual emotion detection model.
|
22 |
-
"""
|
23 |
-
return "Happy" # Replace with your logic
|
24 |
|
25 |
# Resize image to reduce memory usage
|
26 |
def resize_image(image, max_size=(800, 800)):
|
@@ -43,24 +36,24 @@ if uploaded_file is not None:
|
|
43 |
# Convert image to numpy array
|
44 |
image_np = np.array(image)
|
45 |
|
46 |
-
#
|
47 |
-
|
48 |
|
49 |
-
|
50 |
-
|
|
|
|
|
|
|
|
|
51 |
|
52 |
-
|
53 |
-
|
54 |
-
# Draw rectangle around the face
|
55 |
cv2.rectangle(image_np, (x, y), (x+w, y+h), (0, 255, 0), 2)
|
56 |
|
57 |
-
#
|
58 |
-
emotion = detect_emotion(None)
|
59 |
-
|
60 |
-
# Display emotion above the face
|
61 |
cv2.putText(
|
62 |
image_np,
|
63 |
-
|
64 |
(x, y - 10),
|
65 |
cv2.FONT_HERSHEY_SIMPLEX,
|
66 |
0.9,
|
@@ -71,4 +64,4 @@ if uploaded_file is not None:
|
|
71 |
# Display the processed image
|
72 |
st.image(image_np, caption="Processed Image", use_column_width=True)
|
73 |
else:
|
74 |
-
st.warning("No faces detected
|
|
|
1 |
import streamlit as st
|
|
|
2 |
import cv2
|
3 |
+
import numpy as np
|
4 |
from PIL import Image
|
5 |
+
from fer import FER
|
6 |
|
7 |
# Set the page config
|
8 |
st.set_page_config(page_title="Emotion Recognition App", layout="centered")
|
|
|
12 |
# Upload an image
|
13 |
uploaded_file = st.file_uploader("Upload an image", type=["jpg", "jpeg", "png"])
|
14 |
|
15 |
+
# Load FER emotion detection model
|
16 |
+
emotion_detector = FER(mtcnn=True) # Use MTCNN for better face detection
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
|
18 |
# Resize image to reduce memory usage
|
19 |
def resize_image(image, max_size=(800, 800)):
|
|
|
36 |
# Convert image to numpy array
|
37 |
image_np = np.array(image)
|
38 |
|
39 |
+
# Detect emotions
|
40 |
+
results = emotion_detector.detect_emotions(image_np)
|
41 |
|
42 |
+
if results:
|
43 |
+
for face in results:
|
44 |
+
# Get bounding box and detected emotion
|
45 |
+
box = face["box"]
|
46 |
+
emotions = face["emotions"]
|
47 |
+
dominant_emotion = max(emotions, key=emotions.get)
|
48 |
|
49 |
+
# Draw a rectangle around the face
|
50 |
+
x, y, w, h = box
|
|
|
51 |
cv2.rectangle(image_np, (x, y), (x+w, y+h), (0, 255, 0), 2)
|
52 |
|
53 |
+
# Display detected emotion
|
|
|
|
|
|
|
54 |
cv2.putText(
|
55 |
image_np,
|
56 |
+
dominant_emotion,
|
57 |
(x, y - 10),
|
58 |
cv2.FONT_HERSHEY_SIMPLEX,
|
59 |
0.9,
|
|
|
64 |
# Display the processed image
|
65 |
st.image(image_np, caption="Processed Image", use_column_width=True)
|
66 |
else:
|
67 |
+
st.warning("No faces detected or unable to determine emotions.")
|