File size: 1,937 Bytes
46274ff
c096457
46274ff
c096457
 
46274ff
c096457
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
import streamlit as st
import face_recognition
import numpy as np
import cv2
from PIL import Image

# Set the page config
st.set_page_config(page_title="Emotion Recognition App", layout="centered")

st.title("Emotion Recognition App")

# Upload an image
uploaded_file = st.file_uploader("Upload an image", type=["jpg", "jpeg", "png"])

# Define simple emotion mapping based on facial features (for demonstration purposes)
def detect_emotion(face_landmarks):
    """
    A simple mock-up function for detecting emotions based on landmarks.
    Replace with a more sophisticated model as needed.
    """
    # Example: Arbitrarily assign "Happy" if eyes are close together
    if face_landmarks:
        return "Happy"
    return "Neutral"

# Process the uploaded image
if uploaded_file is not None:
    image = Image.open(uploaded_file)
    image_np = np.array(image)

    # Convert image to RGB
    rgb_image = cv2.cvtColor(image_np, cv2.COLOR_BGR2RGB)

    # Detect faces in the image
    face_locations = face_recognition.face_locations(rgb_image)
    face_landmarks_list = face_recognition.face_landmarks(rgb_image)

    if face_locations:
        for face_location, face_landmarks in zip(face_locations, face_landmarks_list):
            # Draw a rectangle around the face
            top, right, bottom, left = face_location
            cv2.rectangle(image_np, (left, top), (right, bottom), (0, 255, 0), 2)

            # Detect emotion based on landmarks
            emotion = detect_emotion(face_landmarks)

            # Display emotion above the face
            cv2.putText(
                image_np,
                emotion,
                (left, top - 10),
                cv2.FONT_HERSHEY_SIMPLEX,
                0.9,
                (255, 0, 0),
                2,
            )

        st.image(image_np, caption="Processed Image", use_column_width=True)
    else:
        st.warning("No faces detected in the image.")