File size: 8,171 Bytes
b63b631 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 |
# Run Flux fast on H100s with torch.compile
#
# See https://modal.com/docs/examples/flux
# Setting up the image and dependencies
import time
from io import BytesIO
from pathlib import Path
import modal
# We’ll make use of the full CUDA toolkit in this example, so we’ll build our container image
# off of the nvidia/cuda base.
cuda_version = "12.4.0" # should be no greater than host CUDA version
flavor = "devel" # includes full CUDA toolkit
operating_sys = "ubuntu22.04"
tag = f"{cuda_version}-{flavor}-{operating_sys}"
cuda_dev_image = modal.Image.from_registry(
f"nvidia/cuda:{tag}", add_python="3.11"
).entrypoint([])
# Now we install most of our dependencies with apt and pip.
# For Hugging Face’s [Diffusers](https://github.com/huggingface/diffusers) library
# we install from GitHub source and so pin to a specific commit.
#
# PyTorch added faster attention kernels for Hopper GPUs in version 2.5,
# so we pin to that version to ensure we get the best performance on H100s.
diffusers_commit_sha = "81cf3b2f155f1de322079af28f625349ee21ec6b"
flux_image = (
cuda_dev_image.apt_install(
"git",
"libglib2.0-0",
"libsm6",
"libxrender1",
"libxext6",
"ffmpeg",
"libgl1",
)
.pip_install(
"invisible_watermark==0.2.0",
"transformers==4.44.0",
"huggingface_hub[hf_transfer]==0.26.2",
"accelerate==0.33.0",
"safetensors==0.4.4",
"sentencepiece==0.2.0",
"torch==2.5.0",
f"git+https://github.com/huggingface/diffusers.git@{diffusers_commit_sha}",
"numpy<2",
)
.env({"HF_HUB_ENABLE_HF_TRANSFER": "1", "HF_HUB_CACHE": "/cache"})
)
# Later, we’ll also use torch.compile to increase the speed further.
# Torch compilation needs to be re-executed when each new container starts,
# So we turn on some extra caching to reduce compile times for later containers.
flux_image = flux_image.env(
{
"TORCHINDUCTOR_CACHE_DIR": "/root/.inductor-cache",
"TORCHINDUCTOR_FX_GRAPH_CACHE": "1",
}
)
# Finally, we construct our Modal App, set its default image to the one we just constructed,
# and import FluxPipeline for downloading and running Flux.1.
app = modal.App(
"example-flux",
image=flux_image,
secrets=[modal.Secret.from_name("huggingface-secret")],
)
# @app.function(
# image=modal.Image.debian_slim().pip_install("torch", "diffusers[torch]", "transformers", "ftfy"),
# gpu="any",
# )
with flux_image.imports():
import torch
from diffusers.pipelines.flux.pipeline_flux import FluxPipeline
# Defining a parameterized Model inference class
#
# Next, we map the model’s setup and inference code onto Modal.
#
# 1. We the model setun in the method decorated with @modal.enter().
# This includes loading the weights and moving them to the GPU,
# along with an optional torch.compile step (see details below).
# The @modal.enter() decorator ensures that this method runs only once,
# when a new container starts, instead of in the path of every call.
#
# 2. We run the actual inference in methods decorated with @modal.method().
MINUTES = 60 # seconds
VARIANT = "schnell" # or "dev", but note [dev] requires you to accept terms and conditions on HF
NUM_INFERENCE_STEPS = 4 # use ~50 for [dev], smaller for [schnell]
@app.cls(
gpu="H100", # fastest GPU on Modal
scaledown_window=20 * MINUTES,
timeout=60 * MINUTES, # leave plenty of time for compilation
volumes={ # add Volumes to store serializable compilation artifacts, see section on torch.compile below
"/cache": modal.Volume.from_name("hf-hub-cache", create_if_missing=True),
"/root/.nv": modal.Volume.from_name("nv-cache", create_if_missing=True),
"/root/.triton": modal.Volume.from_name("triton-cache", create_if_missing=True),
"/root/.inductor-cache": modal.Volume.from_name(
"inductor-cache", create_if_missing=True
),
},
)
class Model:
compile: bool = ( # see section on torch.compile below for details
modal.parameter(default=False)
)
@modal.enter()
def enter(self):
pipe = FluxPipeline.from_pretrained(
f"black-forest-labs/FLUX.1-{VARIANT}", torch_dtype=torch.bfloat16
).to("cuda") # move model to GPU
self.pipe = optimize(pipe, compile=self.compile)
@modal.method()
def inference(self, prompt: str) -> bytes:
print("🎨 generating image...")
out = self.pipe(
prompt,
output_type="pil",
num_inference_steps=NUM_INFERENCE_STEPS,
).images[0] # type: ignore
byte_stream = BytesIO()
out.save(byte_stream, format="JPEG")
return byte_stream.getvalue()
# Calling our inference function
#
# To generate an image we just need to call the Model’s generate method with .remote appended to it.
# You can call .generate.remote from any Python environment that has access to your Modal credentials.
# The local environment will get back the image as bytes.
#
# Here, we wrap the call in a Modal local_entrypoint so that it can be run with modal run:
#
# modal run flux.py
# By default, we call generate twice to demonstrate how much faster the inference is after cold start.
# In our tests, clients received images in about 1.2 seconds. We save the output bytes to a temporary file.
@app.local_entrypoint()
def main(
prompt: str = "a computer screen showing ASCII terminal art of the"
" word 'Modal' in neon green. two programmers are pointing excitedly"
" at the screen.",
twice: bool = True,
compile: bool = False,
):
t0 = time.time()
image_bytes = Model(compile=compile).inference.remote(prompt)
print(f"🎨 first inference latency: {time.time() - t0:.2f} seconds")
if twice:
t0 = time.time()
image_bytes = Model(compile=compile).inference.remote(prompt)
print(f"🎨 second inference latency: {time.time() - t0:.2f} seconds")
output_path = Path("/tmp") / "flux" / "output.jpg"
output_path.parent.mkdir(exist_ok=True, parents=True)
print(f"🎨 saving output to {output_path}")
output_path.write_bytes(image_bytes)
# TODO: Speeding up Flux with torch.compile
def optimize(pipe, compile=True):
# fuse QKV projections in Transformer and VAE
pipe.transformer.fuse_qkv_projections()
pipe.vae.fuse_qkv_projections()
# switch memory layout to Torch's preferred, channels_last
pipe.transformer.to(memory_format=torch.channels_last)
pipe.vae.to(memory_format=torch.channels_last)
if not compile:
return pipe
# set torch compile flags
config = torch._inductor.config # type: ignore
config.disable_progress = False # show progress bar
config.conv_1x1_as_mm = True # treat 1x1 convolutions as matrix muls
# adjust autotuning algorithm
config.coordinate_descent_tuning = True
config.coordinate_descent_check_all_directions = True
config.epilogue_fusion = False # do not fuse pointwise ops into matmuls
# tag the compute-intensive modules, the Transformer and VAE decoder, for compilation
pipe.transformer = torch.compile(
pipe.transformer, mode="max-autotune", fullgraph=True
)
pipe.vae.decode = torch.compile(
pipe.vae.decode, mode="max-autotune", fullgraph=True
)
# trigger torch compilation
print("🔦 running torch compilation (may take up to 20 minutes)...")
pipe(
"dummy prompt to trigger torch compilation",
output_type="pil",
num_inference_steps=NUM_INFERENCE_STEPS, # use ~50 for [dev], smaller for [schnell]
).images[0]
print("🔦 finished torch compilation")
return pipe
# To run this script, use the command:
# modal run flux.py --prompt "a beautiful landscape with mountains and a river" --twice --compile
# This will generate an image based on the provided prompt, run it twice,
# and save the output to a file named `output.jpg` in the `/tmp/flux/` directory.
#
# Make sure to have Modal CLI installed and configured with your API key.
# You can install Modal CLI with:
# pip install modal-cli
# EOF
|