LPX55 commited on
Commit
e2d09ed
·
1 Parent(s): e82c297

feat: add flowchart representation of image prediction process and enhance README with flowchart and multi-model consensus methods overview

Browse files
Files changed (4) hide show
  1. FLOW.gv +66 -0
  2. README.md +23 -0
  3. graph.svg +430 -0
  4. graph_alt.svg +431 -0
FLOW.gv ADDED
@@ -0,0 +1,66 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ digraph ImagePredictionFlow {
2
+ graph [fontname="Arial", fontsize="10", rankdir="TB"]; // Top-to-Bottom, Reduced Width
3
+ node [shape="rect", style="rounded,filled", fontname="Arial", fontsize="10", fillcolor="lightblue", gradientangle="90"];
4
+ edge [fontname="Arial", fontsize="8"];
5
+
6
+ A [label="User Upload,\nPredict", fillcolor="lightgreen"]; //Shorter Label
7
+ B [label="Img Pre-proc,\nAgent Init", fillcolor="lightyellow"];
8
+
9
+ subgraph cluster_models {
10
+ label = "Model Ensemble";
11
+ style = "dashed";
12
+
13
+ ImageIn [shape=point, label="", width=0, height=0];
14
+ Model1 [label="Model1", fillcolor="lightcoral"]; //Shorter Labels
15
+ Model2 [label="Model2", fillcolor="lightcoral"];
16
+ Model3 [label="Model3", fillcolor="lightcoral"];
17
+ Model4 [label="Model4", fillcolor="lightcoral"];
18
+ Model5 [label="Model5", fillcolor="lightcoral"];
19
+ Model6 [label="Model6", fillcolor="lightcoral"];
20
+ Model7 [label="Model7", fillcolor="lightcoral"];
21
+ WeightedConsensusInput [label="Model Results", fillcolor="lightyellow"]; //Shorter Label
22
+
23
+ ImageIn -> Model1; ImageIn -> Model2; ImageIn -> Model3; ImageIn -> Model4; ImageIn -> Model5; ImageIn -> Model6; ImageIn -> Model7;
24
+ Model1 -> WeightedConsensusInput; Model2 -> WeightedConsensusInput; Model3 -> WeightedConsensusInput; Model4 -> WeightedConsensusInput; Model5 -> WeightedConsensusInput; Model6 -> WeightedConsensusInput; Model7 -> WeightedConsensusInput;
25
+ }
26
+
27
+ ContextualIntelligenceAgent [label="Contextual\nIntelligence Agent", fillcolor="lightcyan"]; //Shorter Label
28
+ BaggingAgent [label="BaggingAgent", fillcolor="lightcyan"]; //Shorter Label
29
+ DeepEnsembleAgent [label="DeepEnsemble\nAgent", fillcolor="lightcyan"]; //Shorter Label
30
+ EvolutionEnsembleAgent [label="EvolutionEnsemble\nAgent", fillcolor="lightcyan"]; //Shorter Label
31
+
32
+ WeightManager [label="Weight\nManager", fillcolor="lightcyan"]; //Shorter Label
33
+ WeightedConsensus [label="Weighted\nConsensus", fillcolor="lightgreen"];
34
+ OptimizeAgent [label="Weight\nOpt Agent", fillcolor="lightcyan"]; //Shorter Label
35
+
36
+
37
+ subgraph cluster_forensics {
38
+ label = "Forensic Analysis";
39
+ style = "dashed";
40
+
41
+ ForensicIn [shape=point, label="", width=0, height=0];
42
+ GradientProcessing [label="Gradient\nProcessing", fillcolor="lightpink"]; //Shorter Labels
43
+ MinMaxProcessing [label="MinMax\nProcessing", fillcolor="lightpink"];
44
+ ELAPorcessing [label="ELAPorcessing", fillcolor="lightpink"];
45
+ BitPlaneExtraction [label="BitPlane\nExtraction", fillcolor="lightpink"];
46
+ WaveletBasedNoiseAnalysis [label="Wavelet\nNoise Analysis", fillcolor="lightpink"];
47
+ AnomalyAgent [label="Anomaly\nDetection", fillcolor="lightcyan"]; //Shorter Label
48
+
49
+ ForensicIn -> GradientProcessing; ForensicIn -> MinMaxProcessing; ForensicIn -> ELAPorcessing; ForensicIn -> BitPlaneExtraction; ForensicIn -> WaveletBasedNoiseAnalysis;
50
+ GradientProcessing -> AnomalyAgent; MinMaxProcessing -> AnomalyAgent; ELAPorcessing -> AnomalyAgent; BitPlaneExtraction -> AnomalyAgent; WaveletBasedNoiseAnalysis -> AnomalyAgent;
51
+ }
52
+
53
+ DataLoggingAndOutput [label="Data Logging\nOutput", fillcolor="lightsalmon"];//Shorter Label
54
+ ResultsDisplay [label="Results", fillcolor="lightgreen"]; //Shorter Label
55
+
56
+ // Connections
57
+ A -> B;
58
+ B -> ImageIn;
59
+
60
+ WeightedConsensusInput -> ContextualIntelligenceAgent; WeightedConsensusInput -> BaggingAgent; WeightedConsensusInput -> DeepEnsembleAgent; WeightedConsensusInput -> EvolutionEnsembleAgent; // Connect agents
61
+ ContextualIntelligenceAgent -> WeightManager; BaggingAgent -> WeightManager; DeepEnsembleAgent -> WeightManager; EvolutionEnsembleAgent -> WeightManager; // Agents to WM
62
+ WeightManager -> WeightedConsensus;
63
+ WeightedConsensus -> OptimizeAgent; OptimizeAgent -> WeightManager;
64
+ WeightedConsensus -> ForensicIn; AnomalyAgent -> DataLoggingAndOutput;
65
+ DataLoggingAndOutput -> ResultsDisplay;
66
+ }
README.md CHANGED
@@ -219,6 +219,10 @@ When you upload an image for analysis and click the "Predict" button, the follow
219
  * **Data Type Conversion**: Numerical values (like AI Score, Real Score) are converted to standard Python floats to ensure proper JSON serialization.
220
 
221
  ---
 
 
 
 
222
 
223
  ## Roadmap & Features
224
 
@@ -334,3 +338,22 @@ Here's the updated table with an additional column providing **instructions on h
334
 
335
  ---
336
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
219
  * **Data Type Conversion**: Numerical values (like AI Score, Real Score) are converted to standard Python floats to ensure proper JSON serialization.
220
 
221
  ---
222
+ ## Flow-Chart
223
+
224
+ <img src="graph_alt.svg">
225
+
226
 
227
  ## Roadmap & Features
228
 
 
338
 
339
  ---
340
 
341
+ ---
342
+ ### **Overview of Multi-Model Consensus Methods in ML**
343
+ | **Method** | **Category** | **Description** | **Key Advantages** | **Key Limitations** | **Weaknesses** | **Strengths** |
344
+ |--------------------------|----------------------------|--------------------------------------------------|---------------------------------------------------|--------------------------------------------------------------|----------------------------------------|--------------------------------------------------------------------------------|
345
+ | **Bagging (e.g., Random Forest)** | **Traditional Ensembles** | Trains multiple models on bootstrapped data subsets, aggregating predictions | Reduces overfitting (~variance reduction) | Computationally costly for large datasets; models can be correlated | Not robust to adversarial attacks | Simple to implement; robust to noisy data; handles high-dimensional data well |
346
+ | **Boosting (e.g., XGBoost, LightGBM)** | **Traditional Ensembles** | Iteratively corrects errors using weighted models | High accuracy on structured/tabular data | Risk of overfitting; sensitive to noisy data | Computationally intensive | Dominates in competitions (e.g., Kaggle); scalable for medium datasets |
347
+ | **Stacking** | **Traditional Ensembles** | Combines predictions via a meta-learner | Can outperform individual models; flexible | Increased complexity and data leakage risk | Requires careful hyperparameter tuning | Excels in combining diverse models (e.g., trees + SVMs + linear models) |
348
+ | **Deep Ensembles** | **Deep Learning Ensembles**| Multiple independently trained neural networks | Uncertainty estimation; robust to data shifts | High computational cost; memory-heavy | Model coordination challenges | State-of-the-art in safety-critical domains (e.g., medical imaging, autonomous vehicles) |
349
+ | **Snapshot Ensembles** | **Deep Learning Ensembles**| Saves models at different optimization stages | Efficient (only one training run) | Limited diversity (same architecture/init) | Requires careful checkpoint selection | Lightweight for tasks like on-device deployment |
350
+ | **Monte Carlo Dropout** | **Approximate Ensembles** | Applies dropout at inference to simulate many models | Free ensemble (during testing) | Approximates uncertainty poorly compared to deep ensembles | Limited diversity | Cheap and simple; useful for quick uncertainty estimates |
351
+ | **Mixture of Experts (MoE)** | **Scalable Ensembles** | Specialized sub-models (experts) with a gating mechanism | Efficient scaling (only activate sub-models) | Training instability; uneven expert utilization | Requires expert/gate orchestration | Dominates large-scale applications like Switch Transformers and Hyper-Cloud systems |
352
+ | **Bayesian Neural Networks (BNNs)** | **Probabilistic Ensembles** | Models weights as probability distributions | Built-in uncertainty quantification | Intractable to train exactly; approximations needed | Difficult optimization | Essential for risk-averse applications (robotics, finance) |
353
+ | **Ensemble Knowledge Distillation** | **Model Compression** | Trains a single model to mimic an ensemble | Reduces compute/memory demands | Loses some ensemble benefits (diversity, uncertainty) | Relies on a high-quality teacher ensemble | Enables deployment of ensemble-like performance in compact models (edge devices) |
354
+ | **Noisy Student Training** | **Semi-Supervised Ensembles** | Iterative self-training with teacher-student loops | Uses unlabeled data effectively; improves robustness| Needs large unlabeled data and computational resources | Vulnerable to error propagation | State-of-the-art in semi-supervised settings (e.g., NLP) |
355
+ | **Evolutionary Ensembles** | **Dynamic Ensembles** | Uses genetic algorithms to evolve model populations | Adaptive diversity generation | High time/cost for evolution; niche use cases | Hard to interpret | Useful for non-stationary environments/on datasets with drift |
356
+ | **Consensus Networks** | **NLP/Serverless Ensembles** | Distributes models across clients/aggregates votes | Decentralized privacy-preserving predictions | Communication overhead; non-i.i.d. data conflicts | Requires synchronized coordination | Fed into federated learning systems (e.g., healthcare, finance) |
357
+ | **Hybrid Systems** | **Cross-Architecture Ensembles** | Combines models (e.g., CNNs, GNNs, transformers) | Captures multi-modal or heterogeneous patterns | Integration complexity; delayed inference | Model conflicts | Dominates in tasks requiring domain-specific reasoning (e.g., drug discovery) |
358
+ | **Self-Supervised Ensembles** | **Vision/NLP** | Uses contrastive learning with multiple models (e.g., MoCo, SimCLR) | Data-efficient; strong performance on downstream tasks | Training is resource-heavy; requires pre-training at scale | Low interpretability | Foundations for modern vision/NLP architectures (e.g., resists data scarcity) |
359
+ ---
graph.svg ADDED
graph_alt.svg ADDED