LPX55 commited on
Commit
c3c2134
·
1 Parent(s): acf0228
Files changed (1) hide show
  1. app.py +3 -6
app.py CHANGED
@@ -240,13 +240,12 @@ def infer(image: Image.Image, model_id: str, confidence_threshold: float = 0.75)
240
  "Label": f"Error: {str(e)}"
241
  }
242
 
243
- def full_prediction(img, confidence_threshold, augment_methods, rotate_degrees, noise_level, sharpen_strength):
244
  """Full prediction run, with a team of ensembles and agents.
245
 
246
  Args:
247
  img (url: str, Image.Image, np.ndarray): The input image to classify.
248
  confidence_threshold (float, optional): The confidence threshold for classification. Defaults to 0.75.
249
- augment_methods (list, optional): The augmentation methods to use.
250
  rotate_degrees (int, optional): The degrees to rotate the image.
251
  noise_level (int, optional): The noise level to use.
252
  sharpen_strength (int, optional): The sharpen strength to use.
@@ -283,9 +282,8 @@ def full_prediction(img, confidence_threshold, augment_methods, rotate_degrees,
283
  context_agent = ContextualIntelligenceAgent()
284
  anomaly_agent = ForensicAnomalyDetectionAgent()
285
  health_agent.monitor_system_health()
286
-
287
- if augment_methods:
288
- img_pil, _ = augment_image(img, augment_methods, rotate_degrees, noise_level, sharpen_strength)
289
  else:
290
  img_pil = img
291
  img_np_og = np.array(img)
@@ -429,7 +427,6 @@ detection_model_eval_playground = gr.Interface(
429
  inputs=[
430
  gr.Image(label="Upload Image to Analyze", sources=['upload', 'webcam'], type='filepath'),
431
  gr.Slider(0.0, 1.0, value=0.7, step=0.05, label="Confidence Threshold"),
432
- gr.CheckboxGroup(["rotate", "add_noise", "sharpen"], label="Augmentation Methods"),
433
  gr.Slider(0, 45, value=0, step=1, label="Rotate Degrees", visible=False),
434
  gr.Slider(0, 50, value=0, step=1, label="Noise Level", visible=False),
435
  gr.Slider(0, 50, value=0, step=1, label="Sharpen Strength", visible=False)
 
240
  "Label": f"Error: {str(e)}"
241
  }
242
 
243
+ def full_prediction(img, confidence_threshold, rotate_degrees, noise_level, sharpen_strength):
244
  """Full prediction run, with a team of ensembles and agents.
245
 
246
  Args:
247
  img (url: str, Image.Image, np.ndarray): The input image to classify.
248
  confidence_threshold (float, optional): The confidence threshold for classification. Defaults to 0.75.
 
249
  rotate_degrees (int, optional): The degrees to rotate the image.
250
  noise_level (int, optional): The noise level to use.
251
  sharpen_strength (int, optional): The sharpen strength to use.
 
282
  context_agent = ContextualIntelligenceAgent()
283
  anomaly_agent = ForensicAnomalyDetectionAgent()
284
  health_agent.monitor_system_health()
285
+ if rotate_degrees or noise_level or sharpen_strength:
286
+ img_pil, _ = augment_image(img, ["rotate", "add_noise", "sharpen"], rotate_degrees, noise_level, sharpen_strength)
 
287
  else:
288
  img_pil = img
289
  img_np_og = np.array(img)
 
427
  inputs=[
428
  gr.Image(label="Upload Image to Analyze", sources=['upload', 'webcam'], type='filepath'),
429
  gr.Slider(0.0, 1.0, value=0.7, step=0.05, label="Confidence Threshold"),
 
430
  gr.Slider(0, 45, value=0, step=1, label="Rotate Degrees", visible=False),
431
  gr.Slider(0, 50, value=0, step=1, label="Noise Level", visible=False),
432
  gr.Slider(0, 50, value=0, step=1, label="Sharpen Strength", visible=False)