LPX
refactor: rename predict_image_with_json to predict_with_ensemble and update its implementation to return consensus label
1260077
import os | |
import time | |
from typing import Literal | |
import spaces | |
import gradio as gr | |
from transformers import pipeline, AutoImageProcessor, SwinForImageClassification, Swinv2ForImageClassification, AutoFeatureExtractor, AutoModelForImageClassification | |
from torchvision import transforms | |
import torch | |
from PIL import Image | |
import numpy as np | |
import io | |
import logging | |
from utils.utils import softmax, augment_image, convert_pil_to_bytes | |
from utils.gradient import gradient_processing | |
from utils.minmax import minmax_process | |
from utils.ela import genELA as ELA | |
from utils.wavelet import wavelet_blocking_noise_estimation | |
from utils.bitplane import bit_plane_extractor | |
from utils.hf_logger import log_inference_data | |
from utils.text_content import QUICK_INTRO, IMPLEMENTATION | |
from agents.ensemble_team import EnsembleMonitorAgent, WeightOptimizationAgent, SystemHealthAgent | |
from agents.smart_agents import ContextualIntelligenceAgent, ForensicAnomalyDetectionAgent | |
from forensics.registry import register_model, MODEL_REGISTRY, ModelEntry | |
from agents.ensemble_weights import ModelWeightManager | |
from dotenv import load_dotenv | |
import json | |
from huggingface_hub import CommitScheduler | |
# Configure logging | |
logging.basicConfig(level=logging.INFO) | |
logger = logging.getLogger(__name__) | |
os.environ['HF_HUB_CACHE'] = './models' | |
LOCAL_LOG_DIR = "./hf_inference_logs" | |
HF_DATASET_NAME="degentic_rd0" | |
load_dotenv() | |
# print(os.getenv("HF_HUB_CACHE")) | |
# Custom JSON Encoder to handle numpy types | |
class NumpyEncoder(json.JSONEncoder): | |
def default(self, obj): | |
if isinstance(obj, np.float32): | |
return float(obj) | |
return json.JSONEncoder.default(self, obj) | |
# Ensure using GPU if available | |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') | |
header_style = { | |
"textAlign": 'center', | |
"color": '#fff', | |
"height": 64, | |
"paddingInline": 48, | |
"lineHeight": '64px', | |
"backgroundColor": '#4096ff', | |
} | |
content_style = { | |
"textAlign": 'center', | |
"minHeight": 120, | |
"lineHeight": '120px', | |
"color": '#fff', | |
"backgroundColor": '#0958d9', | |
} | |
sider_style = { | |
"textAlign": 'center', | |
"lineHeight": '120px', | |
"color": '#fff', | |
"backgroundColor": '#1677ff', | |
} | |
footer_style = { | |
"textAlign": 'center', | |
"color": '#fff', | |
"backgroundColor": '#4096ff', | |
} | |
layout_style = { | |
"borderRadius": 8, | |
"overflow": 'hidden', | |
"width": 'calc(100% - 8px)', | |
"maxWidth": 'calc(100% - 8px)', | |
} | |
# Model paths and class names | |
MODEL_PATHS = { | |
"model_1": "haywoodsloan/ai-image-detector-deploy", | |
"model_2": "Heem2/AI-vs-Real-Image-Detection", | |
"model_3": "Organika/sdxl-detector", | |
"model_4": "cmckinle/sdxl-flux-detector_v1.1", | |
"model_5": "prithivMLmods/Deep-Fake-Detector-v2-Model", | |
"model_5b": "prithivMLmods/Deepfake-Detection-Exp-02-22", | |
"model_6": "ideepankarsharma2003/AI_ImageClassification_MidjourneyV6_SDXL", | |
"model_7": "date3k2/vit-real-fake-classification-v4" | |
} | |
CLASS_NAMES = { | |
"model_1": ['artificial', 'real'], | |
"model_2": ['AI Image', 'Real Image'], | |
"model_3": ['AI', 'Real'], | |
"model_4": ['AI', 'Real'], | |
"model_5": ['Realism', 'Deepfake'], | |
"model_5b": ['Real', 'Deepfake'], | |
"model_6": ['ai_gen', 'human'], | |
"model_7": ['Fake', 'Real'], | |
} | |
def preprocess_resize_256(image): | |
if image.mode != 'RGB': | |
image = image.convert('RGB') | |
return transforms.Resize((256, 256))(image) | |
def preprocess_resize_224(image): | |
if image.mode != 'RGB': | |
image = image.convert('RGB') | |
return transforms.Resize((224, 224))(image) | |
def postprocess_pipeline(prediction, class_names): | |
# Assumes HuggingFace pipeline output | |
return {pred['label']: pred['score'] for pred in prediction} | |
def postprocess_logits(outputs, class_names): | |
# Assumes model output with logits | |
logits = outputs.logits.cpu().numpy()[0] | |
probabilities = softmax(logits) | |
return {class_names[i]: probabilities[i] for i in range(len(class_names))} | |
# Expand ModelEntry to include metadata | |
# (Assume ModelEntry is updated in registry.py to accept display_name, contributor, model_path) | |
# If not, we will update registry.py accordingly after this. | |
def register_model_with_metadata(model_id, model, preprocess, postprocess, class_names, display_name, contributor, model_path): | |
entry = ModelEntry(model, preprocess, postprocess, class_names) | |
entry.display_name = display_name | |
entry.contributor = contributor | |
entry.model_path = model_path | |
MODEL_REGISTRY[model_id] = entry | |
# Load and register models (example for two models) | |
image_processor_1 = AutoImageProcessor.from_pretrained(MODEL_PATHS["model_1"], use_fast=True) | |
model_1 = Swinv2ForImageClassification.from_pretrained(MODEL_PATHS["model_1"]).to(device) | |
clf_1 = pipeline(model=model_1, task="image-classification", image_processor=image_processor_1, device=device) | |
register_model_with_metadata( | |
"model_1", clf_1, preprocess_resize_256, postprocess_pipeline, CLASS_NAMES["model_1"], | |
display_name="SwinV2 Based", contributor="haywoodsloan", model_path=MODEL_PATHS["model_1"] | |
) | |
clf_2 = pipeline("image-classification", model=MODEL_PATHS["model_2"], device=device) | |
register_model_with_metadata( | |
"model_2", clf_2, preprocess_resize_224, postprocess_pipeline, CLASS_NAMES["model_2"], | |
display_name="ViT Based", contributor="Heem2", model_path=MODEL_PATHS["model_2"] | |
) | |
# Register remaining models | |
feature_extractor_3 = AutoFeatureExtractor.from_pretrained(MODEL_PATHS["model_3"], device=device) | |
model_3 = AutoModelForImageClassification.from_pretrained(MODEL_PATHS["model_3"]).to(device) | |
def preprocess_256(image): | |
if image.mode != 'RGB': | |
image = image.convert('RGB') | |
return transforms.Resize((256, 256))(image) | |
def postprocess_logits_model3(outputs, class_names): | |
logits = outputs.logits.cpu().numpy()[0] | |
probabilities = softmax(logits) | |
return {class_names[i]: probabilities[i] for i in range(len(class_names))} | |
def model3_infer(image): | |
inputs = feature_extractor_3(image, return_tensors="pt").to(device) | |
with torch.no_grad(): | |
outputs = model_3(**inputs) | |
return outputs | |
register_model_with_metadata( | |
"model_3", model3_infer, preprocess_256, postprocess_logits_model3, CLASS_NAMES["model_3"], | |
display_name="SDXL Dataset", contributor="Organika", model_path=MODEL_PATHS["model_3"] | |
) | |
feature_extractor_4 = AutoFeatureExtractor.from_pretrained(MODEL_PATHS["model_4"], device=device) | |
model_4 = AutoModelForImageClassification.from_pretrained(MODEL_PATHS["model_4"]).to(device) | |
def model4_infer(image): | |
inputs = feature_extractor_4(image, return_tensors="pt").to(device) | |
with torch.no_grad(): | |
outputs = model_4(**inputs) | |
return outputs | |
def postprocess_logits_model4(outputs, class_names): | |
logits = outputs.logits.cpu().numpy()[0] | |
probabilities = softmax(logits) | |
return {class_names[i]: probabilities[i] for i in range(len(class_names))} | |
register_model_with_metadata( | |
"model_4", model4_infer, preprocess_256, postprocess_logits_model4, CLASS_NAMES["model_4"], | |
display_name="SDXL + FLUX", contributor="cmckinle", model_path=MODEL_PATHS["model_4"] | |
) | |
clf_5 = pipeline("image-classification", model=MODEL_PATHS["model_5"], device=device) | |
register_model_with_metadata( | |
"model_5", clf_5, preprocess_resize_224, postprocess_pipeline, CLASS_NAMES["model_5"], | |
display_name="Vit Based", contributor="prithivMLmods", model_path=MODEL_PATHS["model_5"] | |
) | |
clf_5b = pipeline("image-classification", model=MODEL_PATHS["model_5b"], device=device) | |
register_model_with_metadata( | |
"model_5b", clf_5b, preprocess_resize_224, postprocess_pipeline, CLASS_NAMES["model_5b"], | |
display_name="Vit Based, Newer Dataset", contributor="prithivMLmods", model_path=MODEL_PATHS["model_5b"] | |
) | |
image_processor_6 = AutoImageProcessor.from_pretrained(MODEL_PATHS["model_6"], use_fast=True) | |
model_6 = SwinForImageClassification.from_pretrained(MODEL_PATHS["model_6"]).to(device) | |
clf_6 = pipeline(model=model_6, task="image-classification", image_processor=image_processor_6, device=device) | |
register_model_with_metadata( | |
"model_6", clf_6, preprocess_resize_224, postprocess_pipeline, CLASS_NAMES["model_6"], | |
display_name="Swin, Midj + SDXL", contributor="ideepankarsharma2003", model_path=MODEL_PATHS["model_6"] | |
) | |
image_processor_7 = AutoImageProcessor.from_pretrained(MODEL_PATHS["model_7"], use_fast=True) | |
model_7 = AutoModelForImageClassification.from_pretrained(MODEL_PATHS["model_7"]).to(device) | |
clf_7 = pipeline(model=model_7, task="image-classification", image_processor=image_processor_7, device=device) | |
register_model_with_metadata( | |
"model_7", clf_7, preprocess_resize_224, postprocess_pipeline, CLASS_NAMES["model_7"], | |
display_name="ViT", contributor="temp", model_path=MODEL_PATHS["model_7"] | |
) | |
# Generic inference function | |
def infer(image: Image.Image, model_id: str, confidence_threshold: float = 0.75) -> dict: | |
entry = MODEL_REGISTRY[model_id] | |
img = entry.preprocess(image) | |
try: | |
result = entry.model(img) | |
scores = entry.postprocess(result, entry.class_names) | |
# Flatten output for Dataframe: include metadata and both class scores | |
ai_score = float(scores.get(entry.class_names[0], 0.0)) | |
real_score = float(scores.get(entry.class_names[1], 0.0)) | |
label = "AI" if ai_score >= confidence_threshold else ("REAL" if real_score >= confidence_threshold else "UNCERTAIN") | |
return { | |
"Model": entry.display_name, | |
"Contributor": entry.contributor, | |
"HF Model Path": entry.model_path, | |
"AI Score": ai_score, | |
"Real Score": real_score, | |
"Label": label | |
} | |
except Exception as e: | |
return { | |
"Model": entry.display_name, | |
"Contributor": entry.contributor, | |
"HF Model Path": entry.model_path, | |
"AI Score": 0.0, # Ensure it's a float even on error | |
"Real Score": 0.0, # Ensure it's a float even on error | |
"Label": f"Error: {str(e)}" | |
} | |
# Update predict_image to use all registered models in order | |
def predict_image(img, confidence_threshold): | |
model_ids = [ | |
"model_1", "model_2", "model_3", "model_4", "model_5", "model_5b", "model_6", "model_7" | |
] | |
results = [infer(img, model_id, confidence_threshold) for model_id in model_ids] | |
return img, results | |
def get_consensus_label(results): | |
labels = [r[4] for r in results if len(r) > 4] | |
if not labels: | |
return "No results" | |
consensus = max(set(labels), key=labels.count) | |
color = {"AI": "red", "REAL": "green", "UNCERTAIN": "orange"}.get(consensus, "gray") | |
return f"<b><span style='color:{color}'>{consensus}</span></b>" | |
# Update predict_with_ensemble to return consensus label | |
def predict_with_ensemble(img, confidence_threshold, augment_methods, rotate_degrees, noise_level, sharpen_strength): | |
# Ensure img is a PIL Image (if it's not already) | |
if not isinstance(img, Image.Image): | |
try: | |
# If it's a numpy array, convert it | |
img = Image.fromarray(img) | |
except Exception as e: | |
logger.error(f"Error converting input image to PIL: {e}") | |
# If conversion fails, it's a critical error for the whole process | |
raise ValueError("Input image could not be converted to PIL Image.") | |
# Initialize agents | |
monitor_agent = EnsembleMonitorAgent() | |
weight_manager = ModelWeightManager() | |
optimization_agent = WeightOptimizationAgent(weight_manager) | |
health_agent = SystemHealthAgent() | |
# New smart agents | |
context_agent = ContextualIntelligenceAgent() | |
anomaly_agent = ForensicAnomalyDetectionAgent() | |
# Monitor system health | |
health_agent.monitor_system_health() | |
if augment_methods: | |
img_pil, _ = augment_image(img, augment_methods, rotate_degrees, noise_level, sharpen_strength) | |
else: | |
img_pil = img | |
img_np_og = np.array(img) # Convert PIL Image to NumPy array | |
# 1. Get initial predictions from all models | |
model_predictions_raw = {} | |
confidence_scores = {} | |
results = [] # To store the results for the DataFrame | |
for model_id in MODEL_REGISTRY: | |
model_start = time.time() | |
result = infer(img_pil, model_id, confidence_threshold) | |
model_end = time.time() | |
# Monitor individual model performance | |
monitor_agent.monitor_prediction( | |
model_id, | |
result["Label"], | |
max(result.get("AI Score", 0.0), result.get("Real Score", 0.0)), | |
model_end - model_start | |
) | |
model_predictions_raw[model_id] = result # Store the full result dictionary | |
confidence_scores[model_id] = max(result.get("AI Score", 0.0), result.get("Real Score", 0.0)) | |
results.append(result) # Add individual model result to the list | |
# 2. Infer context tags using ContextualIntelligenceAgent | |
image_data_for_context = { | |
"width": img.width, | |
"height": img.height, | |
"mode": img.mode, | |
# Add more features like EXIF data if exif_full_dump is used | |
} | |
detected_context_tags = context_agent.infer_context_tags(image_data_for_context, model_predictions_raw) | |
logger.info(f"Detected context tags: {detected_context_tags}") | |
# 3. Get adjusted weights, passing context tags | |
adjusted_weights = weight_manager.adjust_weights(model_predictions_raw, confidence_scores, context_tags=detected_context_tags) | |
# 4. Optimize weights if needed | |
# `final_prediction_label` is determined AFTER weighted consensus, so analyze_performance will be called later | |
# 5. Calculate weighted consensus | |
weighted_predictions = { | |
"AI": 0.0, | |
"REAL": 0.0, | |
"UNCERTAIN": 0.0 | |
} | |
for model_id, prediction in model_predictions_raw.items(): # Use raw predictions for weighting | |
# Ensure the prediction label is valid for weighted_predictions | |
prediction_label = prediction.get("Label") # Extract the label | |
if prediction_label in weighted_predictions: | |
weighted_predictions[prediction_label] += adjusted_weights[model_id] | |
else: | |
# Handle cases where prediction might be an error or unexpected label | |
logger.warning(f"Unexpected prediction label '{prediction_label}' from model '{model_id}'. Skipping its weight in consensus.") | |
final_prediction_label = "UNCERTAIN" | |
if weighted_predictions["AI"] > weighted_predictions["REAL"] and weighted_predictions["AI"] > weighted_predictions["UNCERTAIN"]: | |
final_prediction_label = "AI" | |
elif weighted_predictions["REAL"] > weighted_predictions["AI"] and weighted_predictions["REAL"] > weighted_predictions["UNCERTAIN"]: | |
final_prediction_label = "REAL" | |
# Call analyze_performance after final_prediction_label is known | |
optimization_agent.analyze_performance(final_prediction_label, None) | |
# 6. Perform forensic processing | |
gradient_image = gradient_processing(img_np_og) # Added gradient processing | |
minmax_image = minmax_process(img_np_og) # Added MinMax processing | |
bitplane_image = bit_plane_extractor(img_pil) | |
# First pass - standard analysis | |
ela1 = ELA(img_np_og, quality=75, scale=50, contrast=20, linear=False, grayscale=True) | |
# Second pass - enhanced visibility | |
ela2 = ELA(img_np_og, quality=75, scale=75, contrast=25, linear=False, grayscale=True) | |
ela3 = ELA(img_np_og, quality=75, scale=75, contrast=25, linear=False, grayscale=False) | |
forensics_images = [img_pil, ela1, ela2, ela3, gradient_image, minmax_image, bitplane_image] | |
# 7. Generate boilerplate descriptions for forensic outputs for anomaly agent | |
forensic_output_descriptions = [ | |
f"Original augmented image (PIL): {img_pil.width}x{img_pil.height}", | |
"ELA analysis (Pass 1): Grayscale error map, quality 75.", | |
"ELA analysis (Pass 2): Grayscale error map, quality 75, enhanced contrast.", | |
"ELA analysis (Pass 3): Color error map, quality 75, enhanced contrast.", | |
"Gradient processing: Highlights edges and transitions.", | |
"MinMax processing: Deviations in local pixel values.", | |
"Bit Plane extractor: Visualization of individual bit planes from different color channels." | |
] | |
# You could also add descriptions for Wavelet and Bit Plane if they were dynamic outputs | |
# For instance, if wavelet_blocking_noise_estimation had parameters that changed and you wanted to describe them. | |
# 8. Analyze forensic outputs for anomalies using ForensicAnomalyDetectionAgent | |
anomaly_detection_results = anomaly_agent.analyze_forensic_outputs(forensic_output_descriptions) | |
logger.info(f"Forensic anomaly detection: {anomaly_detection_results['summary']}") | |
# Prepare table rows for Dataframe (exclude model path) | |
table_rows = [[ | |
r.get("Model", ""), | |
r.get("Contributor", ""), | |
r.get("AI Score", 0.0) if r.get("AI Score") is not None else 0.0, | |
r.get("Real Score", 0.0) if r.get("Real Score") is not None else 0.0, | |
r.get("Label", "Error") | |
] for r in results] | |
logger.info(f"Type of table_rows: {type(table_rows)}") | |
for i, row in enumerate(table_rows): | |
logger.info(f"Row {i} types: {[type(item) for item in row]}") | |
# The get_consensus_label function is now replaced by final_prediction_label from weighted consensus | |
consensus_html = f"<b><span style='color:{'red' if final_prediction_label == 'AI' else ('green' if final_prediction_label == 'REAL' else 'orange')}'>{final_prediction_label}</span></b>" | |
# Prepare data for logging to Hugging Face dataset | |
inference_params = { | |
"confidence_threshold": confidence_threshold, | |
"augment_methods": augment_methods, | |
"rotate_degrees": rotate_degrees, | |
"noise_level": noise_level, | |
"sharpen_strength": sharpen_strength, | |
"detected_context_tags": detected_context_tags | |
} | |
ensemble_output_data = { | |
"final_prediction_label": final_prediction_label, | |
"weighted_predictions": weighted_predictions, | |
"adjusted_weights": adjusted_weights | |
} | |
# Collect agent monitoring data | |
agent_monitoring_data_log = { | |
"ensemble_monitor": { | |
"alerts": monitor_agent.alerts, | |
"performance_metrics": monitor_agent.performance_metrics | |
}, | |
"weight_optimization": { | |
"prediction_history_length": len(optimization_agent.prediction_history), | |
# You might add a summary of recent accuracy here if _calculate_accuracy is exposed | |
}, | |
"system_health": { | |
"memory_usage": health_agent.health_metrics["memory_usage"], | |
"gpu_utilization": health_agent.health_metrics["gpu_utilization"] | |
}, | |
"context_intelligence": { | |
"detected_context_tags": detected_context_tags | |
}, | |
"forensic_anomaly_detection": anomaly_detection_results | |
} | |
# Log the inference data | |
log_inference_data( | |
original_image=img, # Use the original uploaded image | |
inference_params=inference_params, | |
model_predictions=results, # This already contains detailed results for each model | |
ensemble_output=ensemble_output_data, | |
forensic_images=forensics_images, # This is the list of PIL images generated by forensic tools | |
agent_monitoring_data=agent_monitoring_data_log, | |
human_feedback=None # This can be populated later with human review data | |
) | |
# Final type safety check for forensic_images before returning | |
cleaned_forensics_images = [] | |
for f_img in forensics_images: | |
if isinstance(f_img, Image.Image): | |
cleaned_forensics_images.append(f_img) | |
elif isinstance(f_img, np.ndarray): | |
try: | |
cleaned_forensics_images.append(Image.fromarray(f_img)) | |
except Exception as e: | |
logger.warning(f"Could not convert numpy array to PIL Image for gallery: {e}") | |
# Optionally, append a placeholder or skip | |
else: | |
logger.warning(f"Unexpected type in forensic_images: {type(f_img)}. Skipping.") | |
logger.info(f"Cleaned forensic images types: {[type(img) for img in cleaned_forensics_images]}") | |
# Ensure numerical values in results are standard Python floats before JSON serialization | |
for i, res_dict in enumerate(results): | |
for key in ["AI Score", "Real Score"]: | |
value = res_dict.get(key) | |
if isinstance(value, np.float32): | |
res_dict[key] = float(value) | |
logger.info(f"Converted {key} for result {i} from numpy.float32 to float.") | |
# Return raw model results as JSON string for debug_json component | |
json_results = json.dumps(results, cls=NumpyEncoder) | |
return img_pil, cleaned_forensics_images, table_rows, json_results, consensus_html | |
with gr.Blocks(css="#post-gallery { overflow: hidden !important;} .grid-wrap{ overflow-y: hidden !important;} .ms-gr-ant-welcome-icon{ height:unset !important;} .tabs{margin-top:10px;}") as demo: | |
with gr.Tab("👀 Detection Models Eval / Playground"): | |
gr.Markdown("# Open Source Detection Models Found on the Hub\n\n - **Space will be upgraded shortly;** inference on all 6 models should take about 1.2~ seconds once we're back on CUDA.\n - The **Community Forensics** mother of all detection models is now available for inference, head to the middle tab above this.\n - Lots of exciting things coming up, stay tuned!") | |
with gr.Row(): | |
with gr.Column(scale=1): | |
image_input = gr.Image(label="Upload Image to Analyze", sources=['upload', 'webcam'], type='pil') | |
with gr.Accordion("Settings (Optional)", open=False, elem_id="settings_accordion"): | |
augment_checkboxgroup = gr.CheckboxGroup(["rotate", "add_noise", "sharpen"], label="Augmentation Methods") | |
rotate_slider = gr.Slider(0, 45, value=0, step=1, label="Rotate Degrees", visible=False) | |
noise_slider = gr.Slider(0, 50, value=0, step=1, label="Noise Level", visible=False) | |
sharpen_slider = gr.Slider(0, 50, value=0, step=1, label="Sharpen Strength", visible=False) | |
confidence_slider = gr.Slider(0.0, 1.0, value=0.7, step=0.05, label="Confidence Threshold") | |
inputs = [image_input, confidence_slider, augment_checkboxgroup, rotate_slider, noise_slider, sharpen_slider] | |
predict_button = gr.Button("Predict") | |
augment_button = gr.Button("Augment & Predict") | |
image_output = gr.Image(label="Processed Image", visible=False) | |
with gr.Column(scale=2): | |
# Use Gradio-native Dataframe to display results with headers | |
results_table = gr.Dataframe( | |
label="Model Predictions", | |
headers=["Model", "Contributor", "AI Score", "Real Score", "Label"], | |
datatype=["str", "str", "number", "number", "str"] | |
) | |
forensics_gallery = gr.Gallery(label="Post Processed Images", visible=True, columns=[4], rows=[2], container=False, height="auto", object_fit="contain", elem_id="post-gallery") | |
with gr.Accordion("Debug Output (Raw JSON)", open=False): | |
debug_json = gr.JSON(label="Raw Model Results") | |
consensus_md = gr.Markdown(label="Consensus", value="") | |
outputs = [image_output, forensics_gallery, results_table, debug_json, consensus_md] | |
# Show/hide rotate slider based on selected augmentation method | |
augment_checkboxgroup.change(lambda methods: gr.update(visible="rotate" in methods), inputs=[augment_checkboxgroup], outputs=[rotate_slider]) | |
augment_checkboxgroup.change(lambda methods: gr.update(visible="add_noise" in methods), inputs=[augment_checkboxgroup], outputs=[noise_slider]) | |
augment_checkboxgroup.change(lambda methods: gr.update(visible="sharpen" in methods), inputs=[augment_checkboxgroup], outputs=[sharpen_slider]) | |
predict_button.click( | |
fn=predict_with_ensemble, | |
inputs=inputs, | |
outputs=outputs, | |
api_name="predict" | |
) | |
augment_button.click( # Connect Augment button to the function | |
fn=predict_with_ensemble, | |
inputs=[ | |
image_input, | |
confidence_slider, | |
gr.CheckboxGroup(["rotate", "add_noise", "sharpen"], value=["rotate", "add_noise", "sharpen"], visible=False), # Default values | |
rotate_slider, | |
noise_slider, | |
sharpen_slider | |
], | |
outputs=outputs, | |
api_name="augment_then_predict" | |
) | |
with gr.Tab("🙈 Project Introduction"): | |
gr.Markdown(QUICK_INTRO) | |
with gr.Tab("👑 Community Forensics Preview"): | |
# temp_space = gr.load("aiwithoutborders-xyz/OpenSight-Community-Forensics-Preview", src="spaces") | |
gr.Markdown("Community Forensics Preview coming soon!") # Placeholder for now | |
with gr.Tab("🥇 Leaderboard"): | |
gr.Markdown("# AI Generated / Deepfake Detection Models Leaderboard: Soon™") | |
with gr.Tab("Wavelet Blocking Noise Estimation", visible=False): | |
gr.Interface( | |
fn=wavelet_blocking_noise_estimation, | |
inputs=[gr.Image(type="pil"), gr.Slider(1, 32, value=8, step=1, label="Block Size")], | |
outputs=gr.Image(type="pil"), | |
title="Wavelet-Based Noise Analysis", | |
description="Analyzes image noise patterns using wavelet decomposition. This tool helps detect compression artifacts and artificial noise patterns that may indicate image manipulation. Higher noise levels in specific regions can reveal areas of potential tampering.", | |
api_name="tool_waveletnoise" | |
) | |
"""Forensics Tool: Bit Plane Extractor | |
Args: | |
image: PIL Image to analyze | |
channel: Color channel to extract bit plane from ("Luminance", "Red", "Green", "Blue", "RGB Norm") | |
bit_plane: Bit plane index to extract (0-7) | |
filter_type: Filter to apply ("Disabled", "Median", "Gaussian") | |
""" | |
with gr.Tab("Bit Plane Values", visible=False): | |
gr.Interface( | |
fn=bit_plane_extractor, | |
inputs=[ | |
gr.Image(type="pil"), | |
gr.Dropdown(["Luminance", "Red", "Green", "Blue", "RGB Norm"], label="Channel", value="Luminance"), | |
gr.Slider(0, 7, value=0, step=1, label="Bit Plane"), | |
gr.Dropdown(["Disabled", "Median", "Gaussian"], label="Filter", value="Disabled") | |
], | |
outputs=gr.Image(type="pil"), | |
title="Bit Plane Analysis", | |
description="Extracts and visualizes individual bit planes from different color channels. This forensic tool helps identify hidden patterns and artifacts in image data that may indicate manipulation. Different bit planes can reveal inconsistencies in image processing or editing.", | |
api_name="tool_bitplane" | |
) | |
with gr.Tab("Error Level Analysis (ELA)", visible=False): | |
gr.Interface( | |
fn=ELA, | |
inputs=[ | |
gr.Image(type="pil", label="Input Image"), | |
gr.Slider(1, 100, value=75, step=1, label="JPEG Quality"), | |
gr.Slider(1, 100, value=50, step=1, label="Output Scale (Multiplicative Gain)"), | |
gr.Slider(0, 100, value=20, step=1, label="Output Contrast (Tonality Compression)"), | |
gr.Checkbox(value=False, label="Use Linear Difference"), | |
gr.Checkbox(value=False, label="Grayscale Output") | |
], | |
outputs=gr.Image(type="pil"), | |
title="Error Level Analysis (ELA)", | |
description="Performs Error Level Analysis to detect re-saved JPEG images, which can indicate tampering. ELA highlights areas of an image that have different compression levels.", | |
api_name="tool_ela" | |
) | |
with gr.Tab("Gradient Processing", visible=False): | |
gr.Interface( | |
fn=gradient_processing, | |
inputs=[ | |
gr.Image(type="pil", label="Input Image"), | |
gr.Slider(0, 100, value=90, step=1, label="Intensity"), | |
gr.Dropdown(["Abs", "None", "Flat", "Norm"], label="Blue Mode", value="Abs"), | |
gr.Checkbox(value=False, label="Invert Gradients"), | |
gr.Checkbox(value=False, label="Equalize Histogram") | |
], | |
outputs=gr.Image(type="pil"), | |
title="Gradient Processing", | |
description="Applies gradient filters to an image to enhance edges and transitions, which can reveal inconsistencies due to manipulation.", | |
api_name="tool_gradient_processing" | |
) | |
with gr.Tab("MinMax Processing", visible=False): | |
gr.Interface( | |
fn=minmax_process, | |
inputs=[ | |
gr.Image(type="pil", label="Input Image"), | |
gr.Radio([0, 1, 2, 3, 4], label="Channel (0:Grayscale, 1:Blue, 2:Green, 3:Red, 4:RGB Norm)", value=4), | |
gr.Slider(0, 10, value=2, step=1, label="Radius") | |
], | |
outputs=gr.Image(type="pil"), | |
title="MinMax Processing", | |
description="Analyzes local pixel value deviations to detect subtle changes in image data, often indicative of digital forgeries.", | |
api_name="tool_minmax_processing" | |
) | |
# --- MCP-Ready Launch --- | |
if __name__ == "__main__": | |
# Initialize CommitScheduler | |
# The scheduler will monitor LOCAL_LOG_DIR and push changes to HF_DATASET_NAME | |
with CommitScheduler( | |
repo_id=HF_DATASET_NAME, # Your Hugging Face dataset repository ID | |
repo_type="dataset", | |
folder_path=LOCAL_LOG_DIR, | |
every=5, # Commit every 5 minutes | |
private=False, # Keep your dataset private | |
token=os.getenv("HF_TOKEN") # Uncomment and set if token is not saved globally | |
) as scheduler: | |
demo.launch(mcp_server=True) |