File size: 44,208 Bytes
5bef7be |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 |
import gradio as gr
import requests
import json
import os
import asyncio
from datetime import datetime
from typing import Dict, List, Any, Optional, Tuple
from dotenv import load_dotenv
import time
import re
from collections import Counter
import threading
import queue
from gradio_consilium_roundtable import consilium_roundtable
from smolagents import CodeAgent, DuckDuckGoSearchTool, FinalAnswerTool, InferenceClientModel, VisitWebpageTool, Tool
# Load environment variables
load_dotenv()
# API Configuration - These will be updated by UI if needed
MISTRAL_API_KEY = os.getenv("MISTRAL_API_KEY")
SAMBANOVA_API_KEY = os.getenv("SAMBANOVA_API_KEY")
MODERATOR_MODEL = os.getenv("MODERATOR_MODEL", "mistral")
class WikipediaTool(Tool):
name = "wikipedia_search"
description = "Search Wikipedia for comprehensive information on any topic"
inputs = {"query": {"type": "string", "description": "The topic to search for on Wikipedia"}}
output_type = "string"
def forward(self, query: str) -> str:
try:
import wikipedia
# Search for the topic
search_results = wikipedia.search(query, results=3)
if not search_results:
return f"No Wikipedia articles found for: {query}"
# Get the first article
page = wikipedia.page(search_results[0])
summary = page.summary[:1000] + "..." if len(page.summary) > 1000 else page.summary
return f"**Wikipedia: {page.title}**\n\n{summary}\n\nSource: {page.url}"
except Exception as e:
return f"Wikipedia search error: {str(e)}"
class WebSearchAgent:
def __init__(self):
self.agent = CodeAgent(
tools=[
DuckDuckGoSearchTool(),
VisitWebpageTool(),
WikipediaTool(),
FinalAnswerTool()
],
model=InferenceClientModel(),
max_steps=5,
verbosity_level=1
)
def search(self, query: str, max_results: int = 5) -> str:
"""Use the CodeAgent to perform comprehensive web search and analysis"""
try:
# Create a detailed prompt for the agent
agent_prompt = f"""You are a web research agent. Please research the following query comprehensively:
"{query}"
Your task:
1. Search for relevant information using DuckDuckGo or Wikipedia
2. Visit the most promising web pages to get detailed information
3. Synthesize the findings into a comprehensive, well-formatted response
4. Include sources and links where appropriate
5. Format your response with markdown for better readability
Please provide a thorough analysis based on current, reliable information."""
# Run the agent
result = self.agent.run(agent_prompt)
# Format the result nicely
if result:
return f"๐ **Web Research Results for:** {query}\n\n{result}"
else:
return f"๐ **Web Search for:** {query}\n\nNo results found or agent encountered an error."
except Exception as e:
# Fallback to simple error message
return f"๐ **Web Search Error for:** {query}\n\nError: {str(e)}\n\nThe search agent encountered an issue. Please try again or rephrase your query."
class VisualConsensusEngine:
def __init__(self, moderator_model: str = None, update_callback=None):
global MISTRAL_API_KEY, SAMBANOVA_API_KEY
self.moderator_model = moderator_model or MODERATOR_MODEL
self.search_agent = WebSearchAgent()
self.update_callback = update_callback # For real-time updates
# Use global API keys (which may be updated from UI)
self.models = {
'mistral': {
'name': 'Mistral Large',
'api_key': MISTRAL_API_KEY,
'available': bool(MISTRAL_API_KEY)
},
'sambanova_deepseek': {
'name': 'DeepSeek-R1',
'api_key': SAMBANOVA_API_KEY,
'available': bool(SAMBANOVA_API_KEY)
},
'sambanova_llama': {
'name': 'Meta-Llama-3.1-8B',
'api_key': SAMBANOVA_API_KEY,
'available': bool(SAMBANOVA_API_KEY)
},
'sambanova_qwq': {
'name': 'QwQ-32B',
'api_key': SAMBANOVA_API_KEY,
'available': bool(SAMBANOVA_API_KEY)
},
'search': {
'name': 'Web Search Agent',
'api_key': True,
'available': True
}
}
# Role definitions
self.roles = {
'standard': "You are participating in a collaborative AI discussion. Provide thoughtful, balanced analysis.",
'devils_advocate': "You are the devil's advocate. Challenge assumptions, point out weaknesses, and argue alternative perspectives even if unpopular.",
'fact_checker': "You are the fact checker. Focus on verifying claims, checking accuracy, and identifying potential misinformation.",
'synthesizer': "You are the synthesizer. Focus on finding common ground, combining different perspectives, and building bridges between opposing views.",
'domain_expert': "You are a domain expert. Provide specialized knowledge, technical insights, and authoritative perspective on the topic.",
'creative_thinker': "You are the creative thinker. Approach problems from unusual angles, suggest innovative solutions, and think outside conventional boundaries."
}
def update_visual_state(self, state_update: Dict[str, Any]):
"""Update the visual roundtable state"""
if self.update_callback:
self.update_callback(state_update)
def call_model(self, model: str, prompt: str, context: str = "") -> Optional[str]:
"""Generic model calling function"""
if model == 'search':
search_query = self._extract_search_query(prompt)
return self.search_agent.search(search_query)
if not self.models[model]['available']:
return None
full_prompt = f"{context}\n\n{prompt}" if context else prompt
try:
if model == 'mistral':
return self._call_mistral(full_prompt)
elif model.startswith('sambanova_'):
return self._call_sambanova(model, full_prompt)
except Exception as e:
print(f"Error calling {model}: {str(e)}")
return None
def _extract_search_query(self, prompt: str) -> str:
"""Extract search query from prompt or generate one"""
lines = prompt.split('\n')
for line in lines:
if 'QUESTION:' in line:
return line.replace('QUESTION:', '').strip()
for line in lines:
if len(line.strip()) > 10:
return line.strip()[:100]
return prompt[:100]
def _call_sambanova(self, model: str, prompt: str) -> Optional[str]:
global SAMBANOVA_API_KEY
if not SAMBANOVA_API_KEY:
return None
try:
from openai import OpenAI
client = OpenAI(
base_url="https://api.sambanova.ai/v1",
api_key=SAMBANOVA_API_KEY
)
model_mapping = {
'sambanova_deepseek': 'DeepSeek-R1',
'sambanova_llama': 'Meta-Llama-3.1-8B-Instruct',
'sambanova_qwq': 'QwQ-32B'
}
sambanova_model = model_mapping.get(model, 'Meta-Llama-3.1-8B-Instruct')
completion = client.chat.completions.create(
model=sambanova_model,
messages=[
{"role": "user", "content": prompt}
],
max_tokens=2000,
temperature=0.7
)
return completion.choices[0].message.content
except Exception as e:
print(f"Error calling Sambanova {model}: {str(e)}")
return None
def _call_mistral(self, prompt: str) -> Optional[str]:
global MISTRAL_API_KEY
if not MISTRAL_API_KEY:
return None
try:
from openai import OpenAI
client = OpenAI(
base_url="https://api.mistral.ai/v1",
api_key=MISTRAL_API_KEY
)
completion = client.chat.completions.create(
model='mistral-large-latest',
messages=[
{"role": "user", "content": prompt}
],
max_tokens=2000,
temperature=0.7
)
return completion.choices[0].message.content
except Exception as e:
print(f"Error calling Mistral API mistral-large-latest: {str(e)}")
return None
def assign_roles(self, models: List[str], role_assignment: str) -> Dict[str, str]:
"""Assign roles to models"""
if role_assignment == "none":
return {model: "standard" for model in models}
roles_to_assign = []
if role_assignment == "balanced":
roles_to_assign = ["devils_advocate", "fact_checker", "synthesizer", "standard"]
elif role_assignment == "specialized":
roles_to_assign = ["domain_expert", "fact_checker", "creative_thinker", "synthesizer"]
elif role_assignment == "adversarial":
roles_to_assign = ["devils_advocate", "devils_advocate", "standard", "standard"]
while len(roles_to_assign) < len(models):
roles_to_assign.append("standard")
model_roles = {}
for i, model in enumerate(models):
model_roles[model] = roles_to_assign[i % len(roles_to_assign)]
return model_roles
def _extract_confidence(self, response: str) -> float:
"""Extract confidence score from response"""
confidence_match = re.search(r'Confidence:\s*(\d+(?:\.\d+)?)', response)
if confidence_match:
try:
return float(confidence_match.group(1))
except ValueError:
pass
return 5.0
def run_visual_consensus(self, question: str, discussion_rounds: int = 3,
decision_protocol: str = "consensus", role_assignment: str = "balanced",
topology: str = "full_mesh", moderator_model: str = "mistral",
enable_step_by_step: bool = False):
"""Run consensus with visual updates"""
available_models = [model for model, info in self.models.items() if info['available']]
if not available_models:
return "โ No AI models available"
model_roles = self.assign_roles(available_models, role_assignment)
participant_names = [self.models[model]['name'] for model in available_models]
# Log the start
log_discussion_event('phase', content=f"๐ Starting Discussion: {question}")
log_discussion_event('phase', content=f"๐ Configuration: {len(available_models)} models, {decision_protocol} protocol, {role_assignment} roles")
# Initialize visual state
self.update_visual_state({
"participants": participant_names,
"messages": [],
"currentSpeaker": None,
"thinking": [],
"showBubbles": []
})
all_messages = []
# Phase 1: Initial responses
log_discussion_event('phase', content="๐ Phase 1: Initial Responses")
for model in available_models:
# Log and set thinking state
log_discussion_event('thinking', speaker=self.models[model]['name'])
self.update_visual_state({
"participants": participant_names,
"messages": all_messages,
"currentSpeaker": None,
"thinking": [self.models[model]['name']]
})
# No pause before thinking - let AI think immediately
if not enable_step_by_step:
time.sleep(1)
role = model_roles[model]
role_context = self.roles[role]
prompt = f"""{role_context}
QUESTION: {question}
Please provide your initial analysis and answer. Be thoughtful, detailed, and explain your reasoning.
Your response should include:
1. Your direct answer to the question
2. Your reasoning and evidence
3. Any important considerations or nuances
4. END YOUR RESPONSE WITH: "Confidence: X/10" where X is your confidence level"""
# Log and set speaking state
log_discussion_event('speaking', speaker=self.models[model]['name'])
self.update_visual_state({
"participants": participant_names,
"messages": all_messages,
"currentSpeaker": self.models[model]['name'],
"thinking": []
})
# No pause before speaking - let AI respond immediately
if not enable_step_by_step:
time.sleep(2)
response = self.call_model(model, prompt)
if response:
confidence = self._extract_confidence(response)
message = {
"speaker": self.models[model]['name'],
"text": response, # CHANGE: Don't truncate the response
"confidence": confidence,
"role": role
}
all_messages.append(message)
# Log the full response
log_discussion_event('message',
speaker=self.models[model]['name'],
content=response,
role=role,
confidence=confidence)
# Update with new message - add to showBubbles so bubble stays visible
responded_speakers = list(set(msg["speaker"] for msg in all_messages if msg.get("speaker")))
self.update_visual_state({
"participants": participant_names,
"messages": all_messages,
"currentSpeaker": None,
"thinking": [],
"showBubbles": responded_speakers # Keep bubbles visible for all who responded
})
# PAUSE AFTER AI RESPONSE - this is when user can read the response
if enable_step_by_step:
step_continue_event.clear()
step_continue_event.wait() # Wait for user to click Next Step
else:
time.sleep(0.5)
# Phase 2: Discussion rounds
if discussion_rounds > 0:
log_discussion_event('phase', content=f"๐ฌ Phase 2: Discussion Rounds ({discussion_rounds} rounds)")
for round_num in range(discussion_rounds):
log_discussion_event('phase', content=f"๐ Discussion Round {round_num + 1}")
for model in available_models:
# Log and set thinking state
log_discussion_event('thinking', speaker=self.models[model]['name'])
self.update_visual_state({
"participants": participant_names,
"messages": all_messages,
"currentSpeaker": None,
"thinking": [self.models[model]['name']]
})
# No pause before thinking
if not enable_step_by_step:
time.sleep(1)
# Create context of other responses
other_responses = ""
for other_model in available_models:
if other_model != model:
other_responses += f"\n**{self.models[other_model]['name']}**: [Previous response]\n"
discussion_prompt = f"""CONTINUING DISCUSSION FOR: {question}
Round {round_num + 1} of {discussion_rounds}
Other models' current responses:
{other_responses}
Please provide your updated analysis considering the discussion so far.
END WITH: "Confidence: X/10" """
# Log and set speaking state
log_discussion_event('speaking', speaker=self.models[model]['name'])
self.update_visual_state({
"participants": participant_names,
"messages": all_messages,
"currentSpeaker": self.models[model]['name'],
"thinking": []
})
# No pause before speaking
if not enable_step_by_step:
time.sleep(2)
response = self.call_model(model, discussion_prompt)
if response:
confidence = self._extract_confidence(response)
message = {
"speaker": self.models[model]['name'],
"text": f"Round {round_num + 1}: {response}", # CHANGE: Don't truncate
"confidence": confidence,
"role": model_roles[model]
}
all_messages.append(message)
# Log the full response
log_discussion_event('message',
speaker=self.models[model]['name'],
content=f"Round {round_num + 1}: {response}",
role=model_roles[model],
confidence=confidence)
# Update with new message - add to showBubbles so bubble stays visible
responded_speakers = list(set(msg["speaker"] for msg in all_messages if msg.get("speaker")))
self.update_visual_state({
"participants": participant_names,
"messages": all_messages,
"currentSpeaker": None,
"thinking": [],
"showBubbles": responded_speakers # Keep bubbles visible for all who responded
})
# PAUSE AFTER AI RESPONSE for step-by-step mode
if enable_step_by_step:
step_continue_event.clear()
step_continue_event.wait()
else:
time.sleep(1)
# Phase 3: Final consensus - ACTUALLY GENERATE THE CONSENSUS
log_discussion_event('phase', content=f"๐ฏ Phase 3: Final Consensus ({decision_protocol})")
log_discussion_event('thinking', speaker="All participants", content="Building consensus...")
self.update_visual_state({
"participants": participant_names,
"messages": all_messages,
"currentSpeaker": None,
"thinking": participant_names # Everyone thinking about consensus
})
# No pause before consensus generation
if not enable_step_by_step:
time.sleep(2)
# ACTUALLY GENERATE THE FINAL CONSENSUS ANSWER
moderator = self.moderator_model if self.models[self.moderator_model]['available'] else available_models[0]
# Collect all the actual responses for synthesis
all_responses = ""
confidence_scores = []
for entry in discussion_log:
if entry['type'] == 'message' and entry['speaker'] != 'Consilium':
all_responses += f"\n**{entry['speaker']}**: {entry['content']}\n"
if 'confidence' in entry:
confidence_scores.append(entry['confidence'])
# Calculate average confidence to assess consensus likelihood
avg_confidence = sum(confidence_scores) / len(confidence_scores) if confidence_scores else 5.0
consensus_threshold = 7.0 # If average confidence is below this, flag potential disagreement
consensus_prompt = f"""You are synthesizing the final result from this AI discussion.
ORIGINAL QUESTION: {question}
ALL PARTICIPANT RESPONSES:
{all_responses}
AVERAGE CONFIDENCE LEVEL: {avg_confidence:.1f}/10
Your task:
1. Analyze if the participants reached genuine consensus or if there are significant disagreements
2. If there IS consensus: Provide a comprehensive final answer incorporating all insights
3. If there is NO consensus: Clearly state the disagreements and present the main conflicting positions
4. If partially aligned: Identify areas of agreement and areas of disagreement
Be honest about the level of consensus achieved. Do not force agreement where none exists.
Format your response as:
**CONSENSUS STATUS:** [Reached/Partial/Not Reached]
**FINAL ANSWER:** [Your synthesis]
**AREAS OF DISAGREEMENT:** [If any - explain the key points of contention]"""
log_discussion_event('speaking', speaker="Consilium", content="Analyzing consensus and synthesizing final answer...")
self.update_visual_state({
"participants": participant_names,
"messages": all_messages,
"currentSpeaker": "Consilium",
"thinking": []
})
# Generate the actual consensus analysis
consensus_result = self.call_model(moderator, consensus_prompt)
if not consensus_result:
consensus_result = f"""**CONSENSUS STATUS:** Analysis Failed
**FINAL ANSWER:** Unable to generate consensus analysis. Please review individual participant responses in the discussion log.
**AREAS OF DISAGREEMENT:** Analysis could not be completed due to technical issues."""
# Check if consensus was actually reached based on the response
consensus_reached = "CONSENSUS STATUS: Reached" in consensus_result or avg_confidence >= consensus_threshold
# Generate final consensus message for visual
if consensus_reached:
visual_summary = "โ
Consensus reached!"
elif "Partial" in consensus_result:
visual_summary = "โ ๏ธ Partial consensus - some disagreements remain"
else:
visual_summary = "โ No consensus - significant disagreements identified"
final_message = {
"speaker": "Consilium",
"text": f"{visual_summary} {consensus_result}", # CHANGE: Don't truncate consensus
"confidence": avg_confidence,
"role": "consensus"
}
all_messages.append(final_message)
log_discussion_event('message',
speaker="Consilium",
content=consensus_result,
confidence=avg_confidence)
# Final state - show bubbles for all who responded
responded_speakers = list(set(msg["speaker"] for msg in all_messages if msg.get("speaker")))
self.update_visual_state({
"participants": participant_names,
"messages": all_messages,
"currentSpeaker": None,
"thinking": [],
"showBubbles": responded_speakers
})
log_discussion_event('phase', content="โ
Discussion Complete")
return consensus_result # Return the actual analysis, including disagreements
# Global state for the visual component
current_roundtable_state = {
"participants": [],
"messages": [],
"currentSpeaker": None,
"thinking": [],
"showBubbles": []
}
def update_roundtable_state(new_state):
"""Update the global roundtable state"""
global current_roundtable_state
current_roundtable_state.update(new_state)
return json.dumps(current_roundtable_state)
# Global variables for step-by-step control
step_pause_queue = queue.Queue()
step_continue_event = threading.Event()
def run_consensus_discussion(question: str, discussion_rounds: int = 3,
decision_protocol: str = "consensus", role_assignment: str = "balanced",
topology: str = "full_mesh", moderator_model: str = "mistral",
enable_step_by_step: bool = False):
"""Main function that returns both text log and updates visual state"""
global discussion_log, final_answer, step_by_step_active, step_continue_event
discussion_log = [] # Reset log
final_answer = ""
step_by_step_active = enable_step_by_step
step_continue_event.clear()
def visual_update_callback(state_update):
"""Callback to update visual state during discussion"""
update_roundtable_state(state_update)
engine = VisualConsensusEngine(moderator_model, visual_update_callback)
result = engine.run_visual_consensus(
question, discussion_rounds, decision_protocol,
role_assignment, topology, moderator_model, enable_step_by_step
)
# Generate final answer summary
available_models = [model for model, info in engine.models.items() if info['available']]
final_answer = f"""## ๐ฏ Final Consensus Answer
{result}
---
### ๐ Discussion Summary
- **Question:** {question}
- **Protocol:** {decision_protocol.replace('_', ' ').title()}
- **Participants:** {len(available_models)} AI models
- **Roles:** {role_assignment.title()}
- **Communication:** {topology.replace('_', ' ').title()}
- **Rounds:** {discussion_rounds}
*Generated by Consilium Visual AI Consensus Platform*"""
step_by_step_active = False # Reset after discussion
# Return ONLY status for the status field, not the full result
status_text = "โ
Discussion Complete - See results below"
return status_text, json.dumps(current_roundtable_state), final_answer, format_discussion_log()
def continue_step():
"""Function called by the Next Step button"""
global step_continue_event
step_continue_event.set()
return "โ
Continuing... Next AI will respond shortly"
# Global variables for step-by-step control
discussion_log = []
final_answer = ""
step_by_step_active = False
current_step_data = {}
step_callback = None
def set_step_callback(callback):
"""Set the callback for step-by-step mode"""
global step_callback
step_callback = callback
def wait_for_next_step():
"""Wait for user to click 'Next Step' button in step-by-step mode"""
global step_by_step_active
if step_by_step_active and step_callback:
# Return control to UI - the next step button will continue
return True
return False
def format_discussion_log():
"""Format the complete discussion log for display"""
if not discussion_log:
return "No discussion log available yet."
formatted_log = "# ๐ญ Complete Discussion Log\n\n"
for entry in discussion_log:
timestamp = entry.get('timestamp', datetime.now().strftime('%H:%M:%S'))
if entry['type'] == 'thinking':
formatted_log += f"**{timestamp}** ๐ค **{entry['speaker']}** is thinking...\n\n"
elif entry['type'] == 'speaking':
formatted_log += f"**{timestamp}** ๐ฌ **{entry['speaker']}** is responding...\n\n"
elif entry['type'] == 'message':
formatted_log += f"**{timestamp}** โ
**{entry['speaker']}** ({entry.get('role', 'standard')}):\n"
formatted_log += f"> {entry['content']}\n"
if 'confidence' in entry:
formatted_log += f"*Confidence: {entry['confidence']}/10*\n\n"
else:
formatted_log += "\n"
elif entry['type'] == 'phase':
formatted_log += f"\n---\n## {entry['content']}\n---\n\n"
return formatted_log
def log_discussion_event(event_type: str, speaker: str = "", content: str = "", **kwargs):
"""Add an event to the discussion log"""
global discussion_log
discussion_log.append({
'type': event_type,
'speaker': speaker,
'content': content,
'timestamp': datetime.now().strftime('%H:%M:%S'),
**kwargs
})
def update_api_keys(mistral_key, sambanova_key):
"""Update API keys from UI input"""
global MISTRAL_API_KEY, SAMBANOVA_API_KEY
status_messages = []
# Update Mistral key if provided, otherwise keep env var
if mistral_key.strip():
MISTRAL_API_KEY = mistral_key.strip()
status_messages.append("โ
Mistral API key updated")
elif not MISTRAL_API_KEY:
status_messages.append("โ No Mistral API key (env or input)")
else:
status_messages.append("โ
Using Mistral API key from environment")
# Update SambaNova key if provided, otherwise keep env var
if sambanova_key.strip():
SAMBANOVA_API_KEY = sambanova_key.strip()
status_messages.append("โ
SambaNova API key updated")
elif not SAMBANOVA_API_KEY:
status_messages.append("โ No SambaNova API key (env or input)")
else:
status_messages.append("โ
Using SambaNova API key from environment")
# Check if we have at least one working key
if not MISTRAL_API_KEY and not SAMBANOVA_API_KEY:
return "โ ERROR: No API keys available! Please provide at least one API key."
return " | ".join(status_messages)
def check_model_status():
"""Check and display current model availability"""
global MISTRAL_API_KEY, SAMBANOVA_API_KEY
status_info = "## ๐ Model Availability Status\n\n"
models = {
'Mistral Large': MISTRAL_API_KEY,
'DeepSeek-R1': SAMBANOVA_API_KEY,
'Meta-Llama-3.1-8B': SAMBANOVA_API_KEY,
'QwQ-32B': SAMBANOVA_API_KEY,
'Web Search Agent': True
}
for model_name, available in models.items():
if model_name == 'Web Search Agent':
status = "โ
Available (Built-in)"
else:
status = "โ
Available" if available else "โ Not configured"
status_info += f"**{model_name}:** {status}\n\n"
return status_info
# Create the hybrid interface
with gr.Blocks(title="๐ญ Consilium: Visual AI Consensus Platform", theme=gr.themes.Soft()) as demo:
gr.Markdown("""
# ๐ญ Consilium: Visual AI Consensus Platform
**Watch AI models collaborate in real-time around a visual roundtable!**
This platform combines:
- ๐จ **Visual Roundtable Interface** - See AI avatars thinking and speaking
- ๐ค **Multi-Model Consensus** - Mistral, Deepseek, Llama, QwQ
- ๐ญ **Dynamic Role Assignment** - Devil's advocate, fact checker, synthesizer roles
- ๐ **Communication Topologies** - Full mesh, star, ring patterns
- ๐ณ๏ธ **Decision Protocols** - Consensus, voting, weighted, ranked choice
- ๐ **Web Search Integration** - Real-time information gathering
**Perfect for:** Complex decisions, research analysis, creative brainstorming, problem-solving
""")
with gr.Tab("๐ญ Visual Consensus Discussion"):
with gr.Row():
with gr.Column(scale=1):
question_input = gr.Textbox(
label="Discussion Question",
placeholder="What would you like the AI council to discuss and decide?",
lines=3,
value="What are the most effective strategies for combating climate change?"
)
with gr.Row():
decision_protocol = gr.Dropdown(
choices=["consensus", "majority_voting", "weighted_voting", "ranked_choice", "unanimity"],
value="consensus",
label="๐ณ๏ธ Decision Protocol"
)
role_assignment = gr.Dropdown(
choices=["balanced", "specialized", "adversarial", "none"],
value="balanced",
label="๐ญ Role Assignment"
)
with gr.Row():
topology = gr.Dropdown(
choices=["full_mesh", "star", "ring"],
value="full_mesh",
label="๐ Communication Pattern"
)
moderator_model = gr.Dropdown(
choices=["mistral", "sambanova_deepseek", "sambanova_llama", "sambanova_qwq"],
value="mistral",
label="๐จโโ๏ธ Moderator"
)
rounds_input = gr.Slider(
minimum=1, maximum=5, value=2, step=1,
label="๐ Discussion Rounds"
)
enable_clickthrough = gr.Checkbox(
label="โฏ๏ธ Enable Step-by-Step Mode",
value=False,
info="Pause at each step for manual control"
)
start_btn = gr.Button("๐ Start Visual Consensus Discussion", variant="primary", size="lg")
# Step-by-step control button (only visible when step mode is active)
next_step_btn = gr.Button("โฏ๏ธ Next Step", variant="secondary", size="lg", visible=False)
step_status = gr.Textbox(label="Step Control", visible=False, interactive=False)
status_output = gr.Textbox(label="๐ Discussion Status", interactive=False)
with gr.Column(scale=2):
# The visual roundtable component
roundtable = consilium_roundtable(
label="๐ญ AI Consensus Roundtable",
value=json.dumps(current_roundtable_state)
)
# Final answer section
with gr.Row():
final_answer_output = gr.Markdown(
label="๐ฏ Final Consensus Answer",
value="*Discussion results will appear here...*"
)
# Collapsible discussion log
with gr.Accordion("๐ Complete Discussion Log", open=False):
discussion_log_output = gr.Markdown(
value="*Complete discussion transcript will appear here...*"
)
# Event handlers
def on_start_discussion(*args):
# Start discussion immediately for both modes
enable_step = args[-1] # Last argument is enable_step_by_step
if enable_step:
# Step-by-step mode: Start discussion in background thread
def run_discussion():
run_consensus_discussion(*args)
discussion_thread = threading.Thread(target=run_discussion)
discussion_thread.daemon = True
discussion_thread.start()
return (
"๐ฌ Step-by-step mode: Discussion started - will pause after each AI response",
json.dumps(current_roundtable_state),
"*Discussion starting in step-by-step mode...*",
"*Discussion log will appear here...*",
gr.update(visible=True), # Show next step button
gr.update(visible=True, value="Discussion running - will pause after first AI response") # Show step status
)
else:
# Normal mode - start immediately and hide step controls
result = run_consensus_discussion(*args)
return result + (gr.update(visible=False), gr.update(visible=False))
# Function to toggle step controls visibility
def toggle_step_controls(enable_step):
return (
gr.update(visible=enable_step), # next_step_btn
gr.update(visible=enable_step) # step_status
)
# Hide/show step controls when checkbox changes
enable_clickthrough.change(
toggle_step_controls,
inputs=[enable_clickthrough],
outputs=[next_step_btn, step_status]
)
start_btn.click(
on_start_discussion,
inputs=[question_input, rounds_input, decision_protocol, role_assignment, topology, moderator_model, enable_clickthrough],
outputs=[status_output, roundtable, final_answer_output, discussion_log_output, next_step_btn, step_status]
)
# Next step button handler
next_step_btn.click(
continue_step,
outputs=[step_status]
)
# Auto-refresh the roundtable state every 2 seconds during discussion
gr.Timer(2).tick(lambda: json.dumps(current_roundtable_state), outputs=[roundtable])
with gr.Tab("๐ง Configuration & Setup"):
gr.Markdown("## ๐ API Keys Configuration")
gr.Markdown("*Enter your API keys below OR set them as environment variables*")
with gr.Row():
with gr.Column():
mistral_key_input = gr.Textbox(
label="Mistral API Key",
placeholder="Enter your Mistral API key...",
type="password",
info="Required for Mistral Large model"
)
sambanova_key_input = gr.Textbox(
label="SambaNova API Key",
placeholder="Enter your SambaNova API key...",
type="password",
info="Required for DeepSeek, Llama, and QwQ models"
)
with gr.Column():
# Add a button to save/update keys
save_keys_btn = gr.Button("๐พ Save API Keys", variant="secondary")
keys_status = gr.Textbox(
label="Keys Status",
value="No API keys configured - using environment variables if available",
interactive=False
)
# Connect the save button
save_keys_btn.click(
update_api_keys,
inputs=[mistral_key_input, sambanova_key_input],
outputs=[keys_status]
)
model_status_display = gr.Markdown(check_model_status())
# Add refresh button for model status
refresh_status_btn = gr.Button("๐ Refresh Model Status")
refresh_status_btn.click(
check_model_status,
outputs=[model_status_display]
)
gr.Markdown("""
## ๐ ๏ธ Setup Instructions
### ๐ Quick Start (Recommended)
1. **Enter API keys above** (they'll be used for this session)
2. **Click "Save API Keys"**
3. **Start a discussion!**
### ๐ Get API Keys:
- **Mistral:** [console.mistral.ai](https://console.mistral.ai)
- **SambaNova:** [cloud.sambanova.ai](https://cloud.sambanova.ai)
### ๐ Alternative: Environment Variables
```bash
export MISTRAL_API_KEY=your_key_here
export SAMBANOVA_API_KEY=your_key_here
export MODERATOR_MODEL=mistral
```
### ๐ฆ Sambanova Integration
The platform includes **3 Sambanova models**:
- **DeepSeek-R1**: Advanced reasoning model
- **Meta-Llama-3.1-8B**: Fast, efficient discussions
- **QwQ-32B**: Large-scale consensus analysis
### ๐ Web Search Agent
Built-in agent using **smolagents** with:
- **DuckDuckGoSearchTool**: Web searches
- **VisitWebpageTool**: Deep content analysis
- **WikipediaTool**: Comprehensive research
- **TinyLlama**: Fast inference for search synthesis
### ๐ Dependencies
```bash
pip install gradio requests python-dotenv smolagents gradio-consilium-roundtable wikipedia openai
```
### ๐ MCP Integration
Add to your Claude Desktop config:
```json
{
"mcpServers": {
"consilium": {
"command": "npx",
"args": ["mcp-remote", "http://localhost:7860/gradio_api/mcp/sse"]
}
}
}
```
""")
with gr.Tab("๐ Usage Examples"):
gr.Markdown("""
## ๐ฏ Example Discussion Topics
### ๐ง Complex Problem Solving
- "How should we approach the global housing crisis?"
- "What's the best strategy for reducing plastic pollution?"
- "How can we make AI development more democratic?"
### ๐ผ Business Strategy
- "Should our company invest in quantum computing research?"
- "What's the optimal remote work policy for productivity?"
- "How should startups approach AI integration?"
### ๐ฌ Technical Analysis
- "What's the future of web development frameworks?"
- "How should we handle data privacy in the age of AI?"
- "What are the best practices for microservices architecture?"
### ๐ Social Issues
- "How can we bridge political divides in society?"
- "What's the most effective approach to education reform?"
- "How should we regulate social media platforms?"
## ๐ญ Visual Features
**Watch for these visual cues:**
- ๐ค **Orange pulsing avatars** = AI is thinking
- โจ **Gold glowing avatars** = AI is responding
- ๐ฌ **Speech bubbles** = Click avatars to see messages
- ๐ฏ **Center consensus** = Final decision reached
**The roundtable updates in real-time as the discussion progresses!**
## ๐ฎ Role Assignments Explained
### ๐ญ Balanced (Recommended)
- **Devil's Advocate**: Challenges assumptions
- **Fact Checker**: Verifies claims and accuracy
- **Synthesizer**: Finds common ground
- **Standard**: Provides balanced analysis
### ๐ Specialized
- **Domain Expert**: Technical expertise
- **Fact Checker**: Accuracy verification
- **Creative Thinker**: Innovative solutions
- **Synthesizer**: Bridge building
### โ๏ธ Adversarial
- **Double Devil's Advocate**: Maximum challenge
- **Standard**: Balanced counter-perspective
## ๐ณ๏ธ Decision Protocols
- **Consensus**: Seek agreement among all participants
- **Majority Voting**: Most popular position wins
- **Weighted Voting**: Higher confidence scores matter more
- **Ranked Choice**: Preference-based selection
- **Unanimity**: All must agree completely
""")
# Launch configuration
if __name__ == "__main__":
demo.launch(
server_name="0.0.0.0",
server_port=7860,
share=False,
debug=False,
mcp_server=True
) |