File size: 21,742 Bytes
7e5516a
 
 
 
7f8dde5
7e5516a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0335934
 
 
 
 
 
 
 
 
 
 
 
 
 
 
67111fa
7f8dde5
0335934
7e5516a
 
 
 
 
 
 
 
 
 
 
6b93517
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7e5516a
6b93517
 
 
 
 
 
7e5516a
6b93517
 
 
 
7e5516a
6b93517
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7e5516a
6b93517
 
 
 
 
 
7f8dde5
6b93517
7f8dde5
6b93517
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7f8dde5
6b93517
7f8dde5
6b93517
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0335934
6b93517
0335934
6b93517
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7f8dde5
6b93517
7f8dde5
6b93517
 
921b2c3
6b93517
 
 
 
 
 
0335934
6b93517
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0335934
 
 
 
 
 
6b93517
 
 
 
 
 
 
 
 
 
0335934
 
 
 
 
 
 
 
 
 
 
 
 
 
6b93517
 
 
 
 
0335934
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6b93517
7f8dde5
6b93517
 
 
7f8dde5
 
 
 
 
7e5516a
6b93517
 
 
7e5516a
6b93517
7f8dde5
7e5516a
6b93517
 
 
 
 
 
 
 
 
 
 
7e5516a
6b93517
7e5516a
6b93517
 
 
 
 
 
 
 
7e5516a
6b93517
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7f8dde5
6b93517
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7f8dde5
6b93517
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7f8dde5
6b93517
 
 
7e5516a
 
6b93517
7f8dde5
6b93517
 
 
7e5516a
6b93517
 
 
7e5516a
7f8dde5
7e5516a
6b93517
7f8dde5
6b93517
7f8dde5
6b93517
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
67111fa
6b93517
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7f8dde5
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
#!/usr/bin/env python3
"""
Generates slide markdown plus TTS audio and images using Gemini models.
Functions exposed:
    generate_slideshow_with_audio(topic, api_key) -> (list_of_slide_markdown, list_of_audio_paths, list_of_image_paths)
"""

import asyncio
import atexit
import datetime
import os
import re
import shutil
import struct
import tempfile
from pathlib import Path
from io import BytesIO
from typing import Dict, List, Optional

from google import genai
from google.genai import types
from PIL import Image

# Deepgram imports for TTS fallback
try:
    from deepgram import DeepgramClient
    # Try different import paths based on SDK version
    try:
        from deepgram.clients.speak.v1.speak_client import SpeakOptions
    except ImportError:
        try:
            from deepgram.clients.speak.v1 import SpeakOptions
        except ImportError:
            from deepgram.clients.speak import SpeakOptions
    DEEPGRAM_AVAILABLE = True
except ImportError:
    print("Deepgram SDK not available. Install with 'pip install deepgram-sdk'")
    DEEPGRAM_AVAILABLE = False

# Remove the global API key - it will be passed as parameter
DEEPGRAM_KEY = os.environ.get("DEEPGRAM_KEY")

# Dictionary to store temporary directories for cleanup
_temp_dirs: Dict[str, str] = {}

def get_temp_dir(session_id: str) -> str:
    """Get or create a temporary directory for a user session"""
    if session_id not in _temp_dirs:
        temp_dir = tempfile.mkdtemp(prefix=f"slideshow_{session_id}_")
        _temp_dirs[session_id] = temp_dir
    return _temp_dirs[session_id]

def cleanup_temp_dirs():
    """Clean up all temporary directories on exit"""
    for session_id, temp_dir in _temp_dirs.items():
        if os.path.exists(temp_dir):
            print(f"Cleaning up temporary directory for session {session_id}")
            shutil.rmtree(temp_dir, ignore_errors=True)
    _temp_dirs.clear()

# Register cleanup function to run on exit
atexit.register(cleanup_temp_dirs)


# ───────────────────────────── Helpers ──────────────────────────────
def _convert_to_wav(audio_data: bytes, mime_type: str) -> bytes:
    """Ensure Gemini's raw audio is saved as a proper WAV container."""
    params = _parse_audio_mime_type(mime_type)
    bits_per_sample = params["bits_per_sample"]
    sample_rate = params["rate"]
    num_channels, data_size = 1, len(audio_data)
    bytes_per_sample = bits_per_sample // 8
    block_align = num_channels * bytes_per_sample
    byte_rate = sample_rate * block_align
    chunk_size = 36 + data_size

    header = struct.pack(
        "<4sI4s4sIHHIIHH4sI",
        b"RIFF",
        chunk_size,
        b"WAVE",
        b"fmt ",
        16,
        1,
        num_channels,
        sample_rate,
        byte_rate,
        block_align,
        bits_per_sample,
        b"data",
        data_size,
    )
    return header + audio_data


def _parse_audio_mime_type(mime_type: str) -> dict[str, int]:
    """Extract sample‑rate & bit‑depth from something like audio/L16;rate=24000;…"""
    bits_per_sample, rate = 16, 24_000
    for part in mime_type.split(";"):
        part = part.strip().lower()
        if part.startswith("rate="):
            rate = int(part.split("=", 1)[1])
        elif part.startswith("audio/l"):
            bits_per_sample = int(part.split("l", 1)[1])
    return {"bits_per_sample": bits_per_sample, "rate": rate}


# ────────────────────── JSON Parsing Utilities ───────────────────
import json
import re as _re

def _parse_slides_json(response_text: str) -> list[dict]:
    """Parse the JSON response from Gemini and extract slides data."""
    try:
        # Find JSON content within response if it's not pure JSON
        json_match = re.search(r'```json\s*(.+?)\s*```', response_text, re.DOTALL)
        if json_match:
            json_text = json_match.group(1).strip()
        else:
            json_text = response_text.strip()
            
        # Handle potential JSON formatting issues
        json_text = json_text.replace('\t', ' ')
        
        # Parse the JSON
        slides_data = json.loads(json_text)
        return slides_data
    except json.JSONDecodeError as e:
        print(f"Error parsing JSON: {e}\nAttempting fallback parsing...")
        return _fallback_parse(response_text)

def _fallback_parse(text: str) -> list[dict]:
    """Fallback method to extract slides if JSON parsing fails."""
    # This is a simple fallback that tries to extract slide content using regex
    slides = []
    
    # Try to find slide content and speaker notes
    content_matches = re.findall(r'"slide_content"\s*:\s*"([^"]+)"', text, re.DOTALL)
    notes_matches = re.findall(r'"speaker_notes"\s*:\s*"([^"]+)"', text, re.DOTALL)
    
    # Create slide entries
    for i in range(min(len(content_matches), len(notes_matches))):
        slides.append({
            "slide_content": content_matches[i].replace('\\n', '\n'),
            "speaker_notes": notes_matches[i]
        })
    
    return slides if slides else _extract_markdown_slides(text)

def _extract_markdown_slides(markdown: str) -> list[dict]:
    """Extract slides from traditional markdown format (for backwards compatibility)."""
    raw = re.split(r"^##\s+", markdown, flags=re.MULTILINE)
    md_slides = [s for s in raw if s.strip()]
    
    result = []
    for slide in md_slides:
        # Preserve title slide format
        if slide.lstrip().startswith("# "):
            content = slide.lstrip()
        else:
            content = f"## {slide}"  # restore header removed by split
            
        # Extract narration if present
        m = re.search(r"Speaker Notes:\s*(.+)", content, flags=re.I | re.S)
        notes = ""
        if m:
            notes = m.group(1).strip()
            # Remove speaker notes from content
            content = content.split("Speaker Notes:")[0].strip()
        
        result.append({"slide_content": content, "speaker_notes": notes})
        
    return result


# ──────────────────────────── Gemini Calls ───────────────────────────
async def _generate_image(prompt: str, output_path: Path, api_key: str) -> str:
    """Generate an image using Gemini Imagen model and save it to the specified path."""
    client = genai.Client(api_key=api_key)

    try:
        # Make this call in a separate thread to not block the event loop
        # since the Gemini client isn't natively async
        loop = asyncio.get_event_loop()
        result = await loop.run_in_executor(
            None,
            lambda: client.models.generate_images(
                model="models/imagen-3.0-generate-002",
                prompt=prompt,
                config=dict(
                    number_of_images=1,
                    output_mime_type="image/jpeg",
                    person_generation="ALLOW_ADULT",
                    aspect_ratio="16:9",  # Better for slides
                ),
            )
        )

        if not result.generated_images or len(result.generated_images) == 0:
            print("No images generated.")
            return ""

        # Save the generated image
        image = Image.open(BytesIO(result.generated_images[0].image.image_bytes))
        output_path.parent.mkdir(parents=True, exist_ok=True)  # Ensure directory exists
        image.save(output_path)
        return str(output_path)
    except Exception as e:
        print(f"Error generating image: {e}")
        return ""

def _generate_slideshow_markdown(topic: str, api_key: str) -> str:
    """Ask Gemini 2.5 Flash for a markdown deck following strict rules."""
    client = genai.Client(api_key=api_key)
    #model = "gemini-2.5-flash-preview-05-20"
    model = "gemini-2.5-pro-preview-06-05"

    sys_prompt = f"""
<role>
You are SlideGen, an AI that creates fun and engaging narrated slide decks with visual elements about various topics. 
</role>
<instructions>
Create a presentation about '{topic}'. 
Include:
- An introduction slide with bullet points about the overview of the presentation topic and the key areas that will be covered
- 3 content slides with bullet points
- A conclusion slide with bullet points summarizing the key points and insights. 
For each slide provide:
1. Each title should be a single concise and coherent phrase accompanied by exactly one relevant emoji. (Do NOT use the colon ":" format for titles)
2. 3-4 concise bullet points, you will go into more detail in the speaker notes.
3. Clear prose speaker notes suitable for narration that is accessible to general audiences
4. A detailed and specific image prompt for an AI image generator that is relevent to the slide's content. Do not include any text in the image.
Respond with a JSON array where each element represents a slide in the following format:
```json
[
  {{
    "slide_content": "## Introduction Slide Title\n\n",
    "speaker_notes": "Speaker notes",
    "image_prompt": "Image prompt"
  }},
  {{
    "slide_content": "## Content Slide Title\n\n",
    "speaker_notes": "Speaker notes",
    "image_prompt": "Image prompt"
  }},
  {{
    "slide_content": "## Content Slide Title\n\n",
    "speaker_notes": "Speaker notes",
    "image_prompt": "Image prompt"
  }},
  {{
    "slide_content": "## Content Slide Title\n\n",
    "speaker_notes": "Speaker notes",
    "image_prompt": "Image prompt"
  }},
  {{
    "slide_content": "## Conclusion Slide Title\n\n",
    "speaker_notes": "Speaker notes",
    "image_prompt": "Image prompt"
  }},
]
</instructions>
""".strip()

    response = client.models.generate_content(
        model=model,
        contents=[{"role": "user", "parts": [{"text": sys_prompt}]}],
        config=types.GenerateContentConfig(response_mime_type="text/plain", temperature=0.7),
    )
    return response.text.strip()


async def _generate_tts(narration: str, out_path: Path, api_key: str):
    """GenAI TTS β†’ WAV - Async version with fallback model support"""
    client = genai.Client(api_key=api_key)
    
    # Try with flash model first, then fall back to pro model if needed
    models_to_try = ["gemini-2.5-flash-preview-tts", "gemini-2.5-pro-preview-06-05"]
    
    # Create file with write mode first to ensure it's empty
    with open(out_path, "wb") as _:
        pass
    
    # Try models in sequence until one works
    gemini_exhausted = True
    for model in models_to_try:
        try:
            print(f"Attempting TTS with model: {model}")
            
            stream_instance = client.models.generate_content_stream(
                model=model,
                contents=[{"role": "user", "parts": [{"text": narration}]}],
                config=types.GenerateContentConfig(
                    temperature=1,
                    response_modalities=["audio"] if "tts" in model else [],
                    speech_config=types.SpeechConfig(
                        voice_config=types.VoiceConfig(
                            prebuilt_voice_config=types.PrebuiltVoiceConfig(voice_name="Algenib")
                        )
                    ) if "tts" in model else None,
                ),
            )
            
            # Process the stream
            async def process_stream():
                for chunk in stream_instance:
                    if (
                        chunk.candidates
                        and chunk.candidates[0].content
                        and chunk.candidates[0].content.parts
                    ):
                        part = chunk.candidates[0].content.parts[0].inline_data
                        if part and part.data:
                            data = (
                                _convert_to_wav(part.data, part.mime_type)
                                if not part.mime_type.endswith("wav")
                                else part.data
                            )
                            with open(out_path, "ab") as f:
                                f.write(data)
            
            await process_stream()
            # If we get here, the model worked successfully
            print(f"Successfully generated TTS using model: {model}")
            gemini_exhausted = False
            return
                
        except Exception as e:
            if hasattr(e, 'code') and getattr(e, 'code', None) == 429:
                print(f"Model {model} quota exhausted. Trying next model...")
                continue
            else:
                # Re-raise if it's not a quota error
                print(f"Error with model {model}: {e}")
                raise
    
    # If we've tried all Gemini models and none worked, try Deepgram
    if gemini_exhausted and DEEPGRAM_AVAILABLE and DEEPGRAM_KEY:
        try:
            print("Attempting TTS with Deepgram...")
            # Run Deepgram in executor to avoid blocking
            loop = asyncio.get_event_loop()
            await loop.run_in_executor(None, lambda: _generate_tts_with_deepgram(narration, out_path))
            print("Successfully generated TTS using Deepgram")
            return
        except Exception as e:
            print(f"Error with Deepgram TTS: {e}")
            # Continue to fallback empty WAV if Deepgram fails
    
    # Last resort fallback - create empty audio file
    print("All TTS models quota exhausted. Creating empty audio file.")
    with open(out_path, "wb") as f:
        f.write(b'RIFF$\x00\x00\x00WAVEfmt \x10\x00\x00\x00\x01\x00\x01\x00\x00\x04\x00\x00\x00\x04\x00\x00\x01\x00\x08\x00data\x00\x00\x00\x00')


def _generate_tts_with_deepgram(narration: str, out_path: Path):
    """Generate TTS using Deepgram API"""
    # Initialize the Deepgram client
    deepgram = DeepgramClient(DEEPGRAM_KEY)
    print(f"Using Deepgram for TTS generation")
    
    # Configure speech options for v2.x API (which we confirmed works)
    options = SpeakOptions(
        model="aura-2-thalia-en",  # Use Thalia voice
        encoding="linear16",      # This produces WAV format
        container="wav",         # Specify WAV container
        sample_rate=24000        # Sample rate in Hz
    )
    
    # Convert text to speech and save directly to file using the v2.x API
    try:
        response = deepgram.speak.rest.v("1").save(
            str(out_path),          # Output filename
            {"text": narration},    # Text to convert
            options
        )
        print(f"Successfully generated TTS with Deepgram: {out_path}")
        return response
    except Exception as e:
        print(f"Error generating TTS with Deepgram: {e}")
        raise


# ──────────────────────── Public Entry Point ───────────────────
async def generate_slideshow_with_audio_async(topic: str, api_key: str, **kwargs):
    """
    Async version of generate_slideshow_with_audio that processes slides concurrently.
    
    Args:
        topic: The topic to generate a slideshow about
        api_key: Gemini API key
        **kwargs: Optional parameters including session_id
        
    Returns:
        slides_md : list[str]     – markdown for each slide
        audio     : list[str]     – file paths (one per slide, same order)
        images    : list[str|None] – file paths for slide images (one per slide, same order)
    """
    # Get JSON response from Gemini
    json_response = _generate_slideshow_markdown(topic, api_key)
    
    # Parse JSON into slides data
    slides_data = _parse_slides_json(json_response)
    
    # Create temporary directory for this slideshow
    temp_dir = get_temp_dir(str(kwargs.get("session_id", datetime.datetime.now().strftime("%Y%m%d_%H%M%S"))))
    safe_topic = re.sub(r"[^\w\s-]", "", topic)[:30]
    safe_topic = re.sub(r"[-\s]+", "-", safe_topic)
    pres_dir = Path(temp_dir) / safe_topic
    pres_dir.mkdir(parents=True, exist_ok=True)

    slides_md = []
    audio_files = []
    slide_images = [None] * len(slides_data)  # Pre-initialize with None values
    
    print("\n====== GENERATING SLIDESHOW CONTENT ======")
    
    # Set up async tasks
    tts_tasks = []
    image_tasks = []
    
    for i, slide_info in enumerate(slides_data, start=1):
        slides_md.append(slide_info["slide_content"])

        # Get the title for logging
        title_match = re.search(r'##\s+(.+?)\n', slide_info["slide_content"].strip())
        title = title_match.group(1) if title_match else f"Slide {i}"
        print(f"\n--- Processing Slide {i}: {title} ---")

        # Generate and print speaker notes
        narration = slide_info.get("speaker_notes", "")
        print("SPEAKER NOTES:")
        print(narration or "No speaker notes provided.")
        
        # Create paths for output files
        wav_path = pres_dir / f"{safe_topic}_slide_{i:02d}.wav"
        audio_files.append(str(wav_path))
        
        # Schedule TTS task
        if narration:
            print(f"Scheduling TTS for slide {i} -> {wav_path}")
            tts_tasks.append(_generate_tts(narration, wav_path, api_key))
        else:
            # Create empty placeholder WAV if no narration
            with open(wav_path, "wb") as f:
                f.write(b'RIFF$\x00\x00\x00WAVEfmt \x10\x00\x00\x00\x01\x00\x01\x00\x00\x04\x00\x00\x00\x04\x00\x00\x01\x00\x08\x00data\x00\x00\x00\x00')
            print(f"No narration for slide {i}, created empty WAV: {wav_path}")

        # Schedule image generation task
        image_prompt = slide_info.get("image_prompt", "")
        # Append instruction to avoid text in images
        if image_prompt:
            image_prompt = image_prompt.strip() + " Do not include any text in the image."
        print("IMAGE PROMPT:")
        print(image_prompt or "No image prompt provided.")
        if image_prompt:
            image_path = pres_dir / f"{safe_topic}_slide_{i:02d}_image.jpg"
            print(f"Scheduling image for slide {i} -> {image_path}")
            # Store task with index to track which slide it belongs to
            image_tasks.append((i-1, _generate_image(image_prompt, image_path, api_key)))
        else:
            print(f"No image prompt for slide {i}, skipping image generation.")
        
        print("-"*50)
    
    # Execute all TTS tasks concurrently 
    print("\n====== GENERATING TTS IN PARALLEL ======")
    if tts_tasks:
        await asyncio.gather(*tts_tasks)
    print("====== TTS GENERATION COMPLETE ======")
    
    # Execute all image tasks concurrently
    print("\n====== GENERATING IMAGES IN PARALLEL ======")
    if image_tasks:
        # Gather all image generation tasks while preserving their indices
        image_results = await asyncio.gather(*[task for _, task in image_tasks])
        # Map results back to their positions in slide_images
        for (idx, _), path in zip(image_tasks, image_results):
            slide_images[idx] = path
    print("====== IMAGE GENERATION COMPLETE ======")
    
    print("\n====== SLIDESHOW GENERATION COMPLETE ======\n")

    # Ensure all lists have the same length as slides_md
    num_slides = len(slides_md)
    while len(audio_files) < num_slides:
        audio_files.append(None)
    while len(slide_images) < num_slides:
        slide_images.append(None)

    return slides_md, audio_files, slide_images


def generate_slideshow_with_audio(topic: str, api_key: str, **kwargs):
    """
    Synchronous wrapper for the async slideshow generation function.
    Maintains backward compatibility with existing code.
    
    Args:
        topic: The topic to generate a slideshow about
        api_key: Gemini API key
        **kwargs: Optional parameters including:
            - session_id: Unique identifier for the user session
            
    Returns:
        slides_md : list[str]     – markdown for each slide
        audio     : list[str]     – file paths (one per slide, same order)
        images    : list[str|None] – file paths for slide images (one per slide, same order)
    """
    return asyncio.run(generate_slideshow_with_audio_async(topic, api_key, **kwargs))


def validate_topic(topic: str, api_key: str) -> bool:
    """Use Gemini Flash Preview to determine if a topic is suitable for a slideshow."""
    client = genai.Client(api_key=api_key)
    system_prompt = f'''
<role>
You are SlideGenInputGuard, an AI assistant that determines if a user input is a suitable topic for a narrated slideshow presentation.
</role>
<instructions>
Evaluate if "{topic}" is a real-world topic, question, or concept suitable for an educational slideshow. It is fine to include topics that are silly and not real-world topics.
If it is a valid topic, respond with exactly: 1
If it is nonsense, gibberish, meaningless, empty, or not a valid topic, respond with exactly: 0
Only respond with a single digit: 1 or 0. No spaces, newlines or explanations. JUST THE NUMBER 1 OR 0.
</instructions>
<examples>
Input:How does lightning form?
Output:1
Input:The history of horses
Output:1
Input:basketball
Output:1
Input:boobs
Output:1
Input:King Kong
Output:1
Input:Batman
Output:1
Input:Hitler
Output:1
Input:bing bong
Output:0
Input:asdf
Output:0
Input:qwerty
Output:0
Input::)
Output:0
Input:      
Output:0
</examples>
'''.strip()

    response = client.models.generate_content(
        model="gemini-2.5-flash-preview-05-20",
        contents=[{"role": "user", "parts": [{"text": system_prompt}]}],
        config=types.GenerateContentConfig(response_mime_type="text/plain", temperature=0),
    )
    result = response.text.strip()
    return result == "1"