ModalTranscriberMCP / src /ui /gradio_ui.py
richard-su's picture
Upload folder using huggingface_hub
e98f763 verified
raw
history blame
28.8 kB
"""
Gradio interface module
Contains all UI components and interface logic
"""
import gradio as gr
import asyncio
import os
from ..tools import mcp_tools
from ..tools.download_tools import get_file_info_tool, get_mp3_files_tool, read_text_file_segments_tool
from ..tools.transcription_tools import transcribe_audio_file_tool
def write_text_file_content(file_path: str, content: str, mode: str = "w", position: int = None):
"""Simple text file writing function"""
try:
if mode == "r+" and position is not None:
with open(file_path, mode, encoding='utf-8') as f:
f.seek(position)
characters_written = f.write(content)
else:
with open(file_path, mode, encoding='utf-8') as f:
characters_written = f.write(content)
return {
"status": "success",
"characters_written": characters_written,
"operation_type": mode,
"size_change": len(content)
}
except Exception as e:
return {
"status": "failed",
"error_message": str(e)
}
def temporarily_set_hf_token(hf_token: str):
"""Temporarily set HF_TOKEN in environment"""
original_token = os.environ.get("HF_TOKEN")
if hf_token and hf_token.strip():
os.environ["HF_TOKEN"] = hf_token.strip()
print(f"πŸ”‘ Using user-provided HF_TOKEN: {hf_token[:10]}...")
return original_token
def restore_hf_token(original_token: str):
"""Restore original HF_TOKEN in environment"""
if original_token is not None:
os.environ["HF_TOKEN"] = original_token
elif "HF_TOKEN" in os.environ:
del os.environ["HF_TOKEN"]
def get_default_directories():
"""Get default directories based on current environment"""
import pathlib
# Detect environment
is_modal = os.environ.get("MODAL_ENVIRONMENT") == "1" or os.path.exists("/modal")
is_docker = os.path.exists("/.dockerenv")
current_dir = pathlib.Path.cwd()
# Base directories
base_dirs = []
if is_modal:
# Modal environment - use cache directories
base_dirs.extend([
"/root/cache/apple_podcasts",
"/root/cache/xyz_podcasts",
"/tmp/downloads"
])
elif is_docker:
# Docker environment
base_dirs.extend([
"/app/downloads",
"/data/downloads",
"/tmp/downloads"
])
else:
# Local environment - use current directory and common locations
base_dirs.extend([
str(current_dir / "downloads"),
str(current_dir / "cache" / "apple_podcasts"),
str(current_dir / "cache" / "xyz_podcasts"),
"~/Downloads",
"~/Music"
])
# Add common directories
base_dirs.extend(["/tmp", "."])
# Filter out duplicates while preserving order
seen = set()
unique_dirs = []
for d in base_dirs:
if d not in seen:
seen.add(d)
unique_dirs.append(d)
# Determine default directory
default_dir = unique_dirs[0] if unique_dirs else str(current_dir / "downloads")
return unique_dirs, default_dir
def create_gradio_interface():
"""Create Gradio interface
Returns:
gr.Blocks: Configured Gradio interface
"""
with gr.Blocks(title="ModalTranscriberMCP") as demo:
gr.Markdown("# πŸŽ™οΈ ModalTranscriberMCP")
gr.Markdown("**Advanced Audio Transcription with Modal Cloud Computing & MCP Integration**")
# Performance Highlight
gr.Markdown("""
### ⚑ **Supercharged by Modal Serverless GPU**
πŸš€ **10-20x Faster Processing**: 1-hour audio transcribed in just 3-6 minutes
🎯 **Parallel GPU Processing**: Up to 10 concurrent GPU containers
☁️ **Zero Infrastructure Management**: Fully serverless, pay-per-use
""", elem_classes=["performance-highlight"])
# MCP Usage Instructions
gr.Markdown("""
### πŸ“š How to Use This MCP Server
This application provides both a **Web UI** and **MCP (Model Context Protocol) Tools** for AI assistants
A youtube video demo is below:
[![YouTube Video](https://img.youtube.com/vi/Ut5jw7Epb0o/0.jpg)](https://youtu.be/Ut5jw7Epb0o)
#### 🌐 Web Interface
- Use the tabs above to download podcasts and transcribe audio files
- Support for multi-platform downloads (Apple Podcasts, XiaoYuZhou)
- Advanced features: speaker diarization (requires Hugging Face Token), multiple output formats
- **High-speed processing**: Powered by Modal's distributed GPU infrastructure
#### πŸ€– MCP Integration
**For AI Assistants (Claude, etc.):**
```
MCP Server URL: /api/mcp
Available Tools:
β€’ transcribe_audio_file_tool - High-quality audio transcription
β€’ download_apple_podcast_tool - Apple Podcasts audio download
β€’ download_xyz_podcast_tool - XiaoYuZhou podcast download
β€’ get_mp3_files_tool - Scan directories for audio files
β€’ get_file_info_tool - Get file information
β€’ read_text_file_segments_tool - Read large text files in chunks
```
**Connect via MCP Client:**
we deploy mcp server on modal, and we can use the url to connect to the gradio ui
the url is: http://richardsucran--gradio-mcp-ui-app-entry.modal.run
and json config is:
```json
{
"mcpServers": {
"podcast-mcp": {
"url": "http://richardsucran--gradio-mcp-ui-app-entry.modal.run/api/mcp"
}
}
}
```
""", elem_classes=["mcp-instructions"])
# ==================== Podcast Download Tab ====================
with gr.Tab("Podcast Download"):
gr.Markdown("### πŸŽ™οΈ Download Podcast Audio")
url_input = gr.Textbox(
label="Podcast Link",
placeholder="Enter podcast page URL",
lines=1
)
platform_choice = gr.Radio(
choices=["Apple Podcast", "XiaoYuZhou"],
label="Select Podcast Platform",
value="Apple Podcast"
)
# Transcription options
with gr.Row():
auto_transcribe = gr.Checkbox(
label="Auto-transcribe after download",
value=True,
info="Start transcription immediately after download"
)
enable_speaker_diarization = gr.Checkbox(
label="Enable speaker diarization",
value=False,
info="Identify different speakers (requires Hugging Face Token)"
)
# HF Token input for speaker diarization
hf_token_input_download = gr.Textbox(
label="Hugging Face Token (Optional)",
placeholder="Enter your HF token here to override environment variable",
type="password",
info="Required for speaker diarization. If provided, will override HF_TOKEN environment variable."
)
download_btn = gr.Button("πŸ“₯ Start Download", variant="primary")
result_output = gr.JSON(label="Download Results")
async def download_podcast_and_transcribe(url, platform, auto_transcribe, enable_speaker, hf_token):
"""Call corresponding download tool based on selected platform"""
# Temporarily set HF_TOKEN if provided
original_token = temporarily_set_hf_token(hf_token)
try:
if platform == "Apple Podcast":
download_result = await mcp_tools.download_apple_podcast(url)
else:
download_result = await mcp_tools.download_xyz_podcast(url)
# 2. Check if download was successful
if download_result["status"] != "success":
return {
"download_status": "failed",
"error_message": download_result.get("error_message", "Download failed"),
"transcription_status": "not_started"
}
# 3. If not auto-transcribing, return only download results
if not auto_transcribe:
return {
"download_status": "success",
"audio_file": download_result["audio_file_path"],
"transcription_status": "skipped (user chose not to auto-transcribe)"
}
# 4. Start transcription
try:
audio_path = download_result["audio_file_path"]
print(f"Transcribing audio file: {audio_path}")
transcribe_result = await mcp_tools.transcribe_audio_file(
audio_path,
model_size="turbo",
language=None,
output_format="srt",
enable_speaker_diarization=enable_speaker
)
# 5. Merge results
result = {
"download_status": "success",
"audio_file": audio_path,
"transcription_status": "success",
"txt_file_path": transcribe_result.get("txt_file_path"),
"srt_file_path": transcribe_result.get("srt_file_path"),
"transcription_details": {
"model_used": transcribe_result.get("model_used"),
"segment_count": transcribe_result.get("segment_count"),
"audio_duration": transcribe_result.get("audio_duration"),
"saved_files": transcribe_result.get("saved_files", []),
"speaker_diarization_enabled": transcribe_result.get("speaker_diarization_enabled", False)
}
}
# 6. Add speaker diarization info if enabled
if enable_speaker and transcribe_result.get("speaker_diarization_enabled", False):
result["speaker_diarization"] = {
"global_speaker_count": transcribe_result.get("global_speaker_count", 0),
"speaker_summary": transcribe_result.get("speaker_summary", {})
}
return result
except Exception as e:
return {
"download_status": "success",
"audio_file": download_result["audio_file_path"],
"transcription_status": "failed",
"error_message": str(e)
}
finally:
# Restore original HF_TOKEN
restore_hf_token(original_token)
# Bind callback function
download_btn.click(
download_podcast_and_transcribe,
inputs=[url_input, platform_choice, auto_transcribe, enable_speaker_diarization, hf_token_input_download],
outputs=result_output
)
# ==================== Audio Transcription Tab ====================
with gr.Tab("Audio Transcription"):
gr.Markdown("### 🎀 Audio Transcription and Speaker Diarization")
gr.Markdown("Upload audio files for high-quality transcription with speaker diarization support")
with gr.Row():
with gr.Column(scale=2):
# Audio file input
audio_file_input = gr.Textbox(
label="Audio File Path",
placeholder="Enter complete path to audio file (supports mp3, wav, m4a, etc.)",
lines=1
)
# Transcription parameter settings
with gr.Row():
model_size_choice = gr.Dropdown(
choices=["tiny", "base", "small", "medium", "large", "turbo"],
value="turbo",
label="Model Size",
info="Affects transcription accuracy and speed"
)
language_choice = gr.Dropdown(
choices=["auto", "zh", "en", "ja", "ko", "fr", "de", "es"],
value="auto",
label="Language",
info="auto=auto-detect"
)
with gr.Row():
with gr.Column():
output_format_choice = gr.Radio(
choices=["srt", "txt", "json"],
value="srt",
label="Output Format"
)
with gr.Column():
enable_speaker_separation = gr.Checkbox(
label="Enable speaker diarization",
value=False,
info="Requires Hugging Face Token"
)
# HF Token input for speaker diarization
hf_token_input_transcribe = gr.Textbox(
label="Hugging Face Token (Optional)",
placeholder="Enter your HF token here to override environment variable",
type="password",
info="Required for speaker diarization. If provided, will override HF_TOKEN environment variable."
)
transcribe_btn = gr.Button("🎀 Start Transcription", variant="primary", size="lg")
with gr.Column(scale=1):
# Audio file information
audio_info_output = gr.JSON(label="Audio File Information", visible=False)
# Transcription progress and status
transcribe_status = gr.Textbox(
label="Transcription Status",
value="Waiting to start transcription...",
interactive=False,
lines=3
)
# Transcription results display
transcribe_result_output = gr.JSON(
label="Transcription Results",
visible=True
)
# Speaker diarization results (if enabled)
speaker_info_output = gr.JSON(
label="Speaker Diarization Information",
visible=False
)
def perform_transcription(audio_path, model_size, language, output_format, enable_speaker, hf_token):
"""Execute audio transcription"""
if not audio_path.strip():
return {
"error": "Please enter audio file path"
}, "Transcription failed: No audio file selected", gr.update(visible=False)
# Temporarily set HF_TOKEN if provided
original_token = temporarily_set_hf_token(hf_token)
try:
# Check if file exists
import asyncio
file_info = asyncio.run(get_file_info_tool(audio_path))
if file_info["status"] != "success":
return {
"error": f"File does not exist or cannot be accessed: {file_info.get('error_message', 'Unknown error')}"
}, "Transcription failed: File inaccessible", gr.update(visible=False)
try:
# Process language parameter
lang = None if language == "auto" else language
# Call transcription tool
result = asyncio.run(transcribe_audio_file_tool(
audio_file_path=audio_path,
model_size=model_size,
language=lang,
output_format=output_format,
enable_speaker_diarization=enable_speaker
))
# Prepare status information
if result.get("processing_status") == "success":
status_text = f"""βœ… Transcription completed!
πŸ“ Generated files: {len(result.get('saved_files', []))} files
🎡 Audio duration: {result.get('audio_duration', 0):.2f} seconds
πŸ“ Transcription segments: {result.get('segment_count', 0)} segments
🎯 Model used: {result.get('model_used', 'N/A')}
🎭 Speaker diarization: {'Enabled' if result.get('speaker_diarization_enabled', False) else 'Disabled'}"""
# Show speaker information
speaker_visible = result.get('speaker_diarization_enabled', False) and result.get('global_speaker_count', 0) > 0
speaker_info = result.get('speaker_summary', {}) if speaker_visible else {}
return result, status_text, gr.update(visible=speaker_visible, value=speaker_info)
else:
error_msg = result.get('error_message', 'Unknown error')
return result, f"❌ Transcription failed: {error_msg}", gr.update(visible=False)
except Exception as e:
return {
"error": f"Exception occurred during transcription: {str(e)}"
}, f"❌ Transcription exception: {str(e)}", gr.update(visible=False)
finally:
# Restore original HF_TOKEN
restore_hf_token(original_token)
# Bind transcription button
transcribe_btn.click(
perform_transcription,
inputs=[
audio_file_input,
model_size_choice,
language_choice,
output_format_choice,
enable_speaker_separation,
hf_token_input_transcribe
],
outputs=[
transcribe_result_output,
transcribe_status,
speaker_info_output
]
)
# ==================== MP3 File Management Tab ====================
with gr.Tab("MP3 File Management"):
gr.Markdown("### 🎡 MP3 File Management")
# Get environment-specific directories
available_dirs, default_dir = get_default_directories()
# Display environment info
import pathlib
is_modal = os.environ.get("MODAL_ENVIRONMENT") == "1" or os.path.exists("/modal")
is_docker = os.path.exists("/.dockerenv")
current_dir = pathlib.Path.cwd()
if is_modal:
env_info = "πŸš€ **Modal Environment Detected** - Using Modal cache directories"
elif is_docker:
env_info = "🐳 **Docker Environment Detected** - Using container directories"
else:
env_info = f"πŸ’» **Local Environment Detected** - Using current directory: `{current_dir}`"
gr.Markdown(env_info)
with gr.Row():
with gr.Column(scale=3):
# Flexible directory path input
custom_dir_input = gr.Textbox(
label="Custom Directory Path",
placeholder="Enter custom directory path (e.g., /path/to/your/audio/files)",
lines=1,
value=default_dir
)
with gr.Column(scale=2):
# Quick select for environment-specific directories
quick_select = gr.Dropdown(
label="Quick Select",
choices=available_dirs,
value=default_dir,
info="Select directories based on current environment"
)
with gr.Column(scale=1):
scan_btn = gr.Button("πŸ” Scan Directory", variant="primary")
file_list = gr.Textbox(
label="MP3 File List",
interactive=False,
lines=10,
max_lines=20,
show_copy_button=True,
autoscroll=True
)
def list_mp3_files(directory):
"""List MP3 files in directory"""
if not directory or not directory.strip():
return "Please enter a directory path"
try:
result = asyncio.run(get_mp3_files_tool(directory.strip()))
# Check if there's an error
if "error_message" in result:
return f"❌ Error scanning directory: {result['error_message']}"
# Get file list
total_files = result.get('total_files', 0)
file_list = result.get('file_list', [])
scanned_directory = result.get('scanned_directory', directory)
if total_files == 0:
return f"πŸ“‚ No MP3 files found in: {scanned_directory}"
# Format file list for display
display_lines = [
f"πŸ“‚ Found {total_files} MP3 file{'s' if total_files != 1 else ''} in: {scanned_directory}",
"=" * 60
]
for i, file_info in enumerate(file_list, 1):
filename = file_info.get('filename', 'Unknown')
size_mb = file_info.get('file_size_mb', 0)
created_time = file_info.get('created_time', 'Unknown')
full_path = file_info.get('full_path', 'Unknown')
display_lines.append(
f"{i:2d}. πŸ“„ {filename}\n"
f" πŸ’Ύ Size: {size_mb:.2f} MB\n"
f" πŸ“… Created: {created_time}\n"
f" πŸ“ Path: {full_path}"
)
return "\n".join(display_lines)
except Exception as e:
return f"❌ Exception occurred while scanning directory: {str(e)}"
def use_quick_select(selected_path):
"""Use quick select path and auto-scan"""
if selected_path:
return selected_path, list_mp3_files(selected_path)
return "", ""
def scan_directory(custom_path, quick_path):
"""Scan the directory based on custom input or quick select"""
directory = custom_path.strip() if custom_path.strip() else quick_path
return list_mp3_files(directory)
# Bind callback functions
quick_select.change(
use_quick_select,
inputs=[quick_select],
outputs=[custom_dir_input, file_list]
)
scan_btn.click(
scan_directory,
inputs=[custom_dir_input, quick_select],
outputs=[file_list]
)
# Auto-scan when custom directory is entered
custom_dir_input.change(
lambda x: list_mp3_files(x) if x.strip() else "",
inputs=[custom_dir_input],
outputs=[file_list]
)
# ==================== Transcription Text Management Tab ====================
with gr.Tab("Transcription Text Management"):
gr.Markdown("### πŸ“ Transcription Text File Management")
gr.Markdown("View TXT and SRT files generated from audio transcription")
# File path input
file_path_input = gr.Textbox(
label="File Path",
placeholder="Enter path to TXT or SRT file to read",
lines=1
)
# Load button
load_file_btn = gr.Button("πŸ“‚ Load File", variant="primary")
# Text content viewer
content_editor = gr.Textbox(
label="File Content",
placeholder="File content will be displayed here after loading...",
lines=25,
max_lines=40,
show_copy_button=True,
interactive=False
)
# Status information
status_output = gr.Textbox(
label="Status",
interactive=False,
lines=2
)
def load_and_display_file(file_path):
"""Load and display complete file content"""
if not file_path.strip():
return "Please enter a file path", "❌ No file path provided"
try:
# Get file info first
info = asyncio.run(get_file_info_tool(file_path))
if info["status"] != "success":
return "", f"❌ Error: {info.get('error_message', 'Unknown error')}"
# Check file size (warn for very large files)
file_size_mb = info.get('file_size_mb', 0)
if file_size_mb > 10: # Warn for files larger than 10MB
return "", f"⚠️ File is too large ({file_size_mb:.2f} MB). Please use a smaller file for viewing."
# Read entire file content
with open(file_path, 'r', encoding='utf-8') as f:
content = f.read()
# Status message
status = f"βœ… File loaded successfully: {info.get('filename', 'Unknown')}\nπŸ“ Size: {file_size_mb:.2f} MB"
return content, status
except UnicodeDecodeError:
return "", "❌ Error: File contains non-text content or encoding is not UTF-8"
except FileNotFoundError:
return "", "❌ Error: File not found"
except PermissionError:
return "", "❌ Error: Permission denied to read file"
except Exception as e:
return "", f"❌ Error: {str(e)}"
# Bind event handler
load_file_btn.click(
load_and_display_file,
inputs=[file_path_input],
outputs=[content_editor, status_output]
)
return demo