File size: 8,793 Bytes
7b04d4e 49a323c 7b04d4e 33fd6ad 75c2b7c 9bf83e0 33fd6ad 1cddd79 5f3406b 9bf83e0 5f3406b b4f3ea6 740f7c7 b4f3ea6 5f3406b fc9e0d8 740f7c7 7b04d4e 1cddd79 740f7c7 30f620c 27eab0f 30f620c 27eab0f fc9e0d8 49a323c 27eab0f 9fd1d46 b4f3ea6 9fd1d46 27eab0f f2ae346 33fd6ad 1cddd79 f2ae346 1cddd79 5f3406b 740f7c7 5f3406b f2ae346 5f3406b f2ae346 1cddd79 f2ae346 740f7c7 f2ae346 1cddd79 9fd1d46 1cddd79 7b04d4e 740f7c7 9bf83e0 740f7c7 9bf83e0 740f7c7 9bf83e0 740f7c7 9bf83e0 740f7c7 9bf83e0 740f7c7 9bf83e0 1cddd79 30f4028 7b04d4e 740f7c7 1cddd79 740f7c7 9bf83e0 740f7c7 7b04d4e 1cddd79 7e6153d 7b04d4e 1cddd79 b4f3ea6 740f7c7 1cddd79 740f7c7 7b04d4e b4f3ea6 b6ce847 49a323c 27eab0f 9fd1d46 27eab0f 33fd6ad b4f3ea6 1cddd79 7b04d4e b4f3ea6 1cddd79 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 |
import gradio as gr
import cv2
import numpy as np
from groq import Groq
import time
from PIL import Image as PILImage
import io
import os
import base64
import random
def create_monitor_interface():
api_key = os.getenv("GROQ_API_KEY")
class SafetyMonitor:
def __init__(self):
self.client = Groq()
self.model_name = "llama-3.2-90b-vision-preview"
self.max_image_size = (800, 800)
self.colors = [(0, 0, 255), (255, 0, 0), (0, 255, 0), (255, 255, 0), (255, 0, 255)]
self.last_analysis_time = 0
self.analysis_interval = 2
self.last_observations = []
def resize_image(self, image):
height, width = image.shape[:2]
if height > self.max_image_size[1] or width > self.max_image_size[0]:
aspect = width / height
if width > height:
new_width = self.max_image_size[0]
new_height = int(new_width / aspect)
else:
new_height = self.max_image_size[1]
new_width = int(new_height * aspect)
return cv2.resize(image, (new_width, new_height), interpolation=cv2.INTER_AREA)
return image
def analyze_frame(self, frame: np.ndarray) -> str:
if frame is None:
return "No frame received"
# Convert image
if len(frame.shape) == 2:
frame = cv2.cvtColor(frame, cv2.COLOR_GRAY2RGB)
elif len(frame.shape) == 3 and frame.shape[2] == 4:
frame = cv2.cvtColor(frame, cv2.COLOR_RGBA2RGB)
frame = self.resize_image(frame)
frame_pil = PILImage.fromarray(frame)
buffered = io.BytesIO()
frame_pil.save(buffered,
format="JPEG",
quality=85,
optimize=True)
img_base64 = base64.b64encode(buffered.getvalue()).decode('utf-8')
image_url = f"data:image/jpeg;base64,{img_base64}"
try:
completion = self.client.chat.completions.create(
model=self.model_name,
messages=[
{
"role": "user",
"content": [
{
"type": "text",
"text": """Analyze this image for safety hazards. For each issue, describe:
1. The location (top-left, center, bottom-right, etc.)
2. The specific safety concern
Format: - <location>position:description</location>"""
},
{
"type": "image_url",
"image_url": {
"url": image_url
}
}
]
},
{
"role": "assistant",
"content": ""
}
],
temperature=0.1,
max_tokens=200,
top_p=1,
stream=False,
stop=None
)
return completion.choices[0].message.content
except Exception as e:
print(f"Detailed error: {str(e)}")
return f"Analysis Error: {str(e)}"
def get_region_coordinates(self, position: str, image_shape: tuple) -> tuple:
height, width = image_shape[:2]
regions = {
'top-left': (0, 0, width//3, height//3),
'top': (width//3, 0, 2*width//3, height//3),
'top-right': (2*width//3, 0, width, height//3),
'left': (0, height//3, width//3, 2*height//3),
'center': (width//3, height//3, 2*width//3, 2*height//3),
'right': (2*width//3, height//3, width, 2*height//3),
'bottom-left': (0, 2*height//3, width//3, height),
'bottom': (width//3, 2*height//3, 2*width//3, height),
'bottom-right': (2*width//3, 2*height//3, width, height)
}
for region_name, coords in regions.items():
if region_name in position.lower():
return coords
return regions['center']
def draw_observations(self, image, observations):
height, width = image.shape[:2]
font = cv2.FONT_HERSHEY_SIMPLEX
font_scale = 0.6
thickness = 2
for idx, obs in enumerate(observations):
color = self.colors[idx % len(self.colors)]
parts = obs.split(':')
if len(parts) >= 2:
position = parts[0]
description = ':'.join(parts[1:])
else:
position = 'center'
description = obs
x1, y1, x2, y2 = self.get_region_coordinates(position, image.shape)
cv2.rectangle(image, (x1, y1), (x2, y2), color, 2)
label = description[:50] + "..." if len(description) > 50 else description
label_size = cv2.getTextSize(label, font, font_scale, thickness)[0]
label_x = max(0, min(x1, width - label_size[0]))
label_y = max(20, y1 - 5)
cv2.rectangle(image, (label_x, label_y - 20),
(label_x + label_size[0], label_y), color, -1)
cv2.putText(image, label, (label_x, label_y - 5),
font, font_scale, (255, 255, 255), thickness)
return image
def process_frame(self, frame: np.ndarray) -> tuple[np.ndarray, str]:
if frame is None:
return None, "No image provided"
current_time = time.time()
if current_time - self.last_analysis_time >= self.analysis_interval:
analysis = self.analyze_frame(frame)
self.last_analysis_time = current_time
observations = []
for line in analysis.split('\n'):
line = line.strip()
if line.startswith('-'):
if '<location>' in line and '</location>' in line:
start = line.find('<location>') + len('<location>')
end = line.find('</location>')
observation = line[start:end].strip()
if observation:
observations.append(observation)
self.last_observations = observations
display_frame = frame.copy()
annotated_frame = self.draw_observations(display_frame, self.last_observations)
return annotated_frame, '\n'.join([f"- {obs}" for obs in self.last_observations])
# Create the main interface
monitor = SafetyMonitor()
with gr.Blocks() as demo:
gr.Markdown("# Safety Analysis System powered by Llama 3.2 90b vision")
with gr.Row():
input_image = gr.Image(label="Upload Image")
output_image = gr.Image(label="Analysis")
analysis_text = gr.Textbox(label="Safety Concerns", lines=5)
def analyze_image(image):
if image is None:
return None, "No image provided"
try:
processed_frame, analysis = monitor.process_frame(image)
return processed_frame, analysis
except Exception as e:
print(f"Processing error: {str(e)}")
return None, f"Error processing image: {str(e)}"
input_image.change(
fn=analyze_image,
inputs=input_image,
outputs=[output_image, analysis_text]
)
gr.Markdown("""
## Instructions:
1. Upload an image to analyze safety concerns
2. View annotated results and detailed analysis
3. Each box highlights a potential safety issue
""")
return demo
demo = create_monitor_interface()
demo.launch() |