File size: 8,418 Bytes
7b04d4e 49a323c 7b04d4e 75c2b7c aca1712 63920cb a5f647b 771e08a a5f647b 771e08a aca1712 a5f647b 7e37c85 771e08a 519704e 771e08a a01cb2c 63920cb a01cb2c 63920cb a01cb2c 7870fce a01cb2c aca1712 18cd948 519704e a5f647b 519704e 92928c5 519704e a5f647b aca1712 519704e a5f647b 519704e a5f647b 519704e 63920cb 5f3406b 519704e 92928c5 a5f647b 519704e 7870fce c498e95 7870fce 519704e 46e12d1 a5f647b 519704e a5f647b aca1712 519704e bda20be aca1712 46e12d1 a5f647b 7870fce a5f647b 519704e 9bf83e0 519704e a5f647b 519704e f6cffbc 519704e f6cffbc aca1712 a5f647b 7870fce a5f647b f6cffbc 519704e f6cffbc 7870fce f6cffbc a5f647b 7870fce f6cffbc 46e12d1 a5f647b 771e08a a5f647b 1cddd79 a5f647b 7b04d4e 1cddd79 b4f3ea6 46e12d1 1cddd79 18cd948 7b04d4e b4f3ea6 b6ce847 49a323c 27eab0f 9fd1d46 27eab0f 33fd6ad 7e37c85 b4f3ea6 1cddd79 7b04d4e bda20be 46e12d1 771e08a a5f647b bda20be 1cddd79 771e08a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 |
import gradio as gr
import cv2
import numpy as np
from groq import Groq
from PIL import Image as PILImage
import io
import base64
import torch
class RobustSafetyMonitor:
def __init__(self):
"""Initialize the robust safety detection tool with configuration."""
self.client = Groq()
self.model_name = "llama-3.2-90b-vision-preview"
self.max_image_size = (800, 800)
self.colors = [(0, 0, 255), (255, 0, 0), (0, 255, 0), (255, 255, 0), (255, 0, 255)]
# Load YOLOv5 model for general object detection
self.yolo_model = torch.hub.load('ultralytics/yolov5', 'yolov5s', pretrained=True)
def preprocess_image(self, frame):
"""Process image for analysis."""
if len(frame.shape) == 2:
frame = cv2.cvtColor(frame, cv2.COLOR_GRAY2RGB)
elif len(frame.shape) == 3 and frame.shape[2] == 4:
frame = cv2.cvtColor(frame, cv2.COLOR_RGBA2RGB)
return self.resize_image(frame)
def resize_image(self, image):
"""Resize image while maintaining aspect ratio."""
height, width = image.shape[:2]
if height > self.max_image_size[1] or width > self.max_image_size[0]:
aspect = width / height
if width > height:
new_width = self.max_image_size[0]
new_height = int(new_width / aspect)
else:
new_height = self.max_image_size[1]
new_width = int(new_height * aspect)
return cv2.resize(image, (new_width, new_height), interpolation=cv2.INTER_AREA)
return image
def encode_image(self, frame):
"""Convert image to base64 encoding without extra formatting."""
frame_pil = PILImage.fromarray(frame)
buffered = io.BytesIO()
frame_pil.save(buffered, format="JPEG", quality=95) # Ensure JPEG format
img_base64 = base64.b64encode(buffered.getvalue()).decode('utf-8')
return img_base64 # Return only the base64 string
def detect_objects(self, frame):
"""Detect objects using YOLOv5."""
results = self.yolo_model(frame)
# Extract bounding boxes, class labels, and confidence scores
bbox_data = results.xyxy[0].numpy() # Bounding box coordinates
labels = results.names # Class names
return bbox_data, labels
def analyze_frame(self, frame):
"""Perform safety analysis on the frame using Llama Vision 3.2."""
if frame is None:
return "No frame received", {}
frame = self.preprocess_image(frame)
image_base64 = self.encode_image(frame)
try:
# Use Llama Vision 3.2 to analyze the context of the image and detect risks
completion = self.client.chat.completions.create(
model=self.model_name,
messages=[
{
"role": "user",
"content": [
{
"type": "text",
"text": """Analyze this workplace image and identify any potential safety risks.
Consider the positioning of workers, the equipment, materials, and environment.
Flag risks like improper equipment use, worker proximity to danger zones, unstable materials, and environmental hazards."""
},
{
"type": "image_url",
"image_url": {
"url": image_base64 # Corrected: Send only the base64 string
}
}
]
}
],
temperature=0.7,
max_tokens=1024,
stream=False
)
# Process and parse the response correctly
response = completion.choices[0].message['content']
return self.parse_safety_analysis(response), response # Return parsed analysis and full response
except Exception as e:
print(f"Analysis error: {str(e)}")
return f"Analysis Error: {str(e)}", {}
def draw_bounding_boxes(self, image, bboxes, labels, safety_issues):
"""Draw bounding boxes around objects based on safety issues flagged by Llama Vision."""
font = cv2.FONT_HERSHEY_SIMPLEX
font_scale = 0.5
thickness = 2
for idx, bbox in enumerate(bboxes):
x1, y1, x2, y2, conf, class_id = bbox
label = labels[int(class_id)]
color = self.colors[idx % len(self.colors)]
# Draw bounding box
cv2.rectangle(image, (int(x1), int(y1)), (int(x2), int(y2)), color, thickness)
# Link detected object to potential risks based on Llama Vision analysis
for safety_issue in safety_issues:
if safety_issue['object'].lower() in label.lower():
label_text = f"Risk: {safety_issue['description']}"
cv2.putText(image, label_text, (int(x1), int(y1) - 10), font, font_scale, (0, 0, 255), thickness)
break
else:
label_text = f"{label} {conf:.2f}"
cv2.putText(image, label_text, (int(x1), int(y1) - 10), font, font_scale, color, thickness)
return image
def process_frame(self, frame):
"""Main processing pipeline for dynamic, robust safety analysis."""
if frame is None:
return None, "No image provided"
try:
# Detect objects dynamically in the image using YOLO
bbox_data, labels = self.detect_objects(frame)
frame_with_boxes = self.draw_bounding_boxes(frame, bbox_data, labels, [])
# Get dynamic safety analysis from Llama Vision 3.2
safety_issues, analysis = self.analyze_frame(frame)
# Update the frame with bounding boxes based on safety issues flagged
annotated_frame = self.draw_bounding_boxes(frame_with_boxes, bbox_data, labels, safety_issues)
return annotated_frame, analysis
except Exception as e:
print(f"Processing error: {str(e)}")
return None, f"Error processing image: {str(e)}"
def parse_safety_analysis(self, analysis):
"""Parse the safety analysis to identify contextual issues and link to objects."""
safety_issues = []
for line in analysis.split('\n'):
if "risk" in line.lower() or "hazard" in line.lower():
# Extract object involved and description
parts = line.split(':', 1)
if len(parts) == 2:
safety_issues.append({
"object": parts[0].strip(),
"description": parts[1].strip()
})
return safety_issues
def create_monitor_interface():
monitor = RobustSafetyMonitor()
with gr.Blocks() as demo:
gr.Markdown("# Robust Safety Analysis System powered by Llama Vision 3.2")
with gr.Row():
input_image = gr.Image(label="Upload Image")
output_image = gr.Image(label="Safety Analysis")
analysis_text = gr.Textbox(label="Detailed Analysis", lines=5)
def analyze_image(image):
if image is None:
return None, "No image provided"
try:
processed_frame, analysis = monitor.process_frame(image)
return processed_frame, analysis
except Exception as e:
print(f"Processing error: {str(e)}")
return None, f"Error processing image: {str(e)}"
input_image.upload(
fn=analyze_image,
inputs=input_image,
outputs=[output_image, analysis_text]
)
gr.Markdown("""
## Instructions:
1. Upload any workplace/safety-related image
2. View identified hazards and their locations
3. Read detailed analysis of safety concerns based on the image
""")
return demo
if __name__ == "__main__":
demo = create_monitor_interface()
demo.launch()
|