File size: 10,080 Bytes
7b04d4e 49a323c 7b04d4e 33fd6ad 75c2b7c 33fd6ad 1cddd79 5f3406b 9bf83e0 5f3406b bda20be 18cd948 b122109 1cddd79 18cd948 bda20be 46e12d1 33fd6ad 1cddd79 f2ae346 1cddd79 5f3406b 46e12d1 bda20be 46e12d1 bda20be 46e12d1 bda20be 46e12d1 bda20be 46e12d1 5f3406b f2ae346 5f3406b 1cddd79 bda20be 46f4ca8 1cddd79 18cd948 1cddd79 bda20be 18cd948 740f7c7 46e12d1 bda20be 46e12d1 bda20be 46e12d1 bda20be 46e12d1 bda20be 9bf83e0 46e12d1 9bf83e0 18cd948 9bf83e0 46f4ca8 46e12d1 46f4ca8 18cd948 46e12d1 bd1163f 46e12d1 bd1163f 46e12d1 bd1163f 46e12d1 bd1163f bda20be bd1163f 46e12d1 bd1163f bda20be 9bf83e0 46e12d1 1cddd79 7e6153d 7b04d4e 1cddd79 b4f3ea6 46e12d1 1cddd79 18cd948 7b04d4e b4f3ea6 b6ce847 49a323c 27eab0f 9fd1d46 27eab0f 33fd6ad b4f3ea6 1cddd79 7b04d4e bda20be 46e12d1 bda20be 1cddd79 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 |
import gradio as gr
import cv2
import numpy as np
from groq import Groq
import time
from PIL import Image as PILImage
import io
import os
import base64
def create_monitor_interface():
api_key = os.getenv("GROQ_API_KEY")
class SafetyMonitor:
def __init__(self):
self.client = Groq()
self.model_name = "llama-3.2-90b-vision-preview"
self.max_image_size = (800, 800)
self.colors = [(0, 0, 255), (255, 0, 0), (0, 255, 0), (255, 255, 0), (255, 0, 255)]
def analyze_frame(self, frame: np.ndarray) -> str:
if frame is None:
return "No frame received"
frame = self.preprocess_image(frame)
image_url = self.encode_image(frame)
try:
completion = self.client.chat.completions.create(
model=self.model_name,
messages=[
{
"role": "user",
"content": [
{
"type": "text",
"text": """Analyze this image for safety hazards and issues. For each identified hazard:
1. Specify the exact location in the image where the hazard exists
2. Describe the specific safety concern
3. Note any violations or risks
Format each observation exactly as:
- <location>area:hazard description</location>
Examples of locations: top-left, center, bottom-right, full-area, near-machine, workspace, etc.
Look for ALL types of safety issues including:
- Personal protective equipment (PPE)
- Machine and equipment hazards
- Ergonomic risks
- Environmental hazards
- Fire and electrical safety
- Chemical safety
- Fall protection
- Material handling
- Access/egress issues
- Housekeeping
- Tool safety
- Emergency equipment
Be specific about locations and provide detailed observations."""
},
{
"type": "image_url",
"image_url": {
"url": image_url
}
}
]
}
],
temperature=0.5,
max_tokens=500,
stream=False
)
return completion.choices[0].message.content
except Exception as e:
print(f"Analysis error: {str(e)}")
return f"Analysis Error: {str(e)}"
def preprocess_image(self, frame):
"""Prepare image for analysis."""
if len(frame.shape) == 2:
frame = cv2.cvtColor(frame, cv2.COLOR_GRAY2RGB)
elif len(frame.shape) == 3 and frame.shape[2] == 4:
frame = cv2.cvtColor(frame, cv2.COLOR_RGBA2RGB)
return self.resize_image(frame)
def resize_image(self, image):
"""Resize image while maintaining aspect ratio."""
height, width = image.shape[:2]
if height > self.max_image_size[1] or width > self.max_image_size[0]:
aspect = width / height
if width > height:
new_width = self.max_image_size[0]
new_height = int(new_width / aspect)
else:
new_height = self.max_image_size[1]
new_width = int(new_height * aspect)
return cv2.resize(image, (new_width, new_height), interpolation=cv2.INTER_AREA)
return image
def encode_image(self, frame):
"""Convert image to base64 encoding."""
frame_pil = PILImage.fromarray(frame)
buffered = io.BytesIO()
frame_pil.save(buffered, format="JPEG", quality=95)
img_base64 = base64.b64encode(buffered.getvalue()).decode('utf-8')
return f"data:image/jpeg;base64,{img_base64}"
def parse_locations(self, observation: str) -> dict:
"""Parse location information from observation."""
locations = {
'full': (0, 0, 1, 1),
'top': (0.2, 0, 0.8, 0.3),
'bottom': (0.2, 0.7, 0.8, 1),
'left': (0, 0.2, 0.3, 0.8),
'right': (0.7, 0.2, 1, 0.8),
'center': (0.3, 0.3, 0.7, 0.7),
'top-left': (0, 0, 0.3, 0.3),
'top-right': (0.7, 0, 1, 0.3),
'bottom-left': (0, 0.7, 0.3, 1),
'bottom-right': (0.7, 0.7, 1, 1),
'workspace': (0.2, 0.2, 0.8, 0.8),
'near-machine': (0.6, 0.1, 1, 0.9),
'floor-area': (0, 0.7, 1, 1),
'equipment': (0.5, 0.1, 1, 0.9)
}
# Find best matching location
text = observation.lower()
best_match = 'center'
max_match = 0
for loc in locations.keys():
if loc in text:
words = loc.split('-')
matches = sum(1 for word in words if word in text)
if matches > max_match:
max_match = matches
best_match = loc
return locations[best_match]
def draw_observations(self, image, observations):
"""Draw bounding boxes and labels for safety observations."""
height, width = image.shape[:2]
font = cv2.FONT_HERSHEY_SIMPLEX
font_scale = 0.5
thickness = 2
padding = 10
for idx, obs in enumerate(observations):
color = self.colors[idx % len(self.colors)]
# Get relative coordinates and convert to absolute
rel_coords = self.parse_locations(obs['location'])
x1 = int(rel_coords[0] * width)
y1 = int(rel_coords[1] * height)
x2 = int(rel_coords[2] * width)
y2 = int(rel_coords[3] * height)
# Draw rectangle
cv2.rectangle(image, (x1, y1), (x2, y2), color, 2)
# Prepare label
label = obs['description'][:50]
if len(obs['description']) > 50:
label += "..."
# Calculate text position
label_size, _ = cv2.getTextSize(label, font, font_scale, thickness)
text_x = max(0, x1)
text_y = max(label_size[1] + padding, y1 - padding)
# Draw label background
cv2.rectangle(image,
(text_x, text_y - label_size[1] - padding),
(text_x + label_size[0] + padding, text_y),
color, -1)
# Draw label text
cv2.putText(image, label,
(text_x + padding//2, text_y - padding//2),
font, font_scale, (255, 255, 255), thickness)
return image
def process_frame(self, frame: np.ndarray) -> tuple[np.ndarray, str]:
"""Process frame and generate safety analysis with visualizations."""
if frame is None:
return None, "No image provided"
# Get analysis
analysis = self.analyze_frame(frame)
display_frame = frame.copy()
# Parse observations
observations = []
for line in analysis.split('\n'):
line = line.strip()
if line.startswith('-') and '<location>' in line and '</location>' in line:
start = line.find('<location>') + len('<location>')
end = line.find('</location>')
location_description = line[start:end].strip()
# Split location and description
if ':' in location_description:
location, description = location_description.split(':', 1)
observations.append({
'location': location.strip(),
'description': description.strip()
})
# Draw observations if any were found
if observations:
annotated_frame = self.draw_observations(display_frame, observations)
return annotated_frame, analysis
return display_frame, analysis
# Create interface
monitor = SafetyMonitor()
with gr.Blocks() as demo:
gr.Markdown("# Safety Analysis System powered by Llama 3.2 90b vision")
with gr.Row():
input_image = gr.Image(label="Upload Image")
output_image = gr.Image(label="Safety Analysis")
analysis_text = gr.Textbox(label="Detailed Analysis", lines=5)
def analyze_image(image):
if image is None:
return None, "No image provided"
try:
processed_frame, analysis = monitor.process_frame(image)
return processed_frame, analysis
except Exception as e:
print(f"Processing error: {str(e)}")
return None, f"Error processing image: {str(e)}"
input_image.change(
fn=analyze_image,
inputs=input_image,
outputs=[output_image, analysis_text]
)
gr.Markdown("""
## Instructions:
1. Upload any workplace/safety-related image
2. View identified hazards and safety concerns
3. Check detailed analysis for recommendations
""")
return demo
demo = create_monitor_interface()
demo.launch() |