File size: 4,816 Bytes
7b04d4e 33fd6ad 7b04d4e 33fd6ad 7b04d4e 33fd6ad 7b04d4e 33fd6ad 7b04d4e 33fd6ad 7b04d4e 33fd6ad 7b04d4e 33fd6ad 7b04d4e 33fd6ad 7b04d4e 33fd6ad 7b04d4e 33fd6ad 7b04d4e 33fd6ad 7b04d4e 33fd6ad 7b04d4e 33fd6ad 7b04d4e 33fd6ad 7b04d4e 33fd6ad 7b04d4e 33fd6ad 7b04d4e 33fd6ad 7b04d4e 33fd6ad 7b04d4e 33fd6ad |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 |
import gradio as gr
import cv2
import numpy as np
from groq import Groq
import time
from PIL import Image
import io
import os
from dotenv import load_dotenv
# Load environment variables
load_dotenv()
class SafetyMonitor:
def __init__(self, model_name: str = "mixtral-8x7b-vision"):
"""
Initialize the safety monitor using environment variables for API key
"""
api_key = os.getenv("GROQ_API_KEY")
if not api_key:
raise ValueError("GROQ_API_KEY environment variable is not set")
self.client = Groq(api_key=api_key)
self.model_name = model_name
def analyze_frame(self, frame: np.ndarray) -> str:
"""
Analyze a single frame using specified vision model
"""
if frame is None:
return "No frame received"
# Convert frame to PIL Image
frame_pil = Image.fromarray(frame)
# Convert image to bytes
img_byte_arr = io.BytesIO()
frame_pil.save(img_byte_arr, format='JPEG')
img_byte_arr = img_byte_arr.getvalue()
# Safety analysis prompt
prompt = """Please analyze this image for workplace safety issues. Focus on:
1. Required PPE usage (hard hats, safety glasses, reflective vests)
2. Unsafe behaviors or positions
3. Equipment and machinery safety
4. Environmental hazards (spills, obstacles, poor lighting)
Provide specific observations and any immediate safety concerns."""
try:
completion = self.client.chat.completions.create(
messages=[
{
"role": "user",
"content": [
{"type": "text", "text": prompt},
{"type": "image", "image": img_byte_arr}
]
}
],
model=self.model_name,
max_tokens=200,
temperature=0.2
)
return completion.choices[0].message.content
except Exception as e:
return f"Analysis Error: {str(e)}"
def process_frame(self, frame: np.ndarray) -> tuple[np.ndarray, str]:
"""
Process and analyze a single frame
"""
if frame is None:
return None, "No frame received"
analysis = self.analyze_frame(frame)
# Create a copy of frame for visualization
display_frame = frame.copy()
# Add semi-transparent overlay for text background
overlay = display_frame.copy()
cv2.rectangle(overlay, (5, 5), (640, 200), (0, 0, 0), -1)
cv2.addWeighted(overlay, 0.3, display_frame, 0.7, 0, display_frame)
# Add analysis text
cv2.putText(display_frame, "Safety Analysis:", (10, 30),
cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 255, 0), 2)
# Split and display analysis text
y_position = 60
for line in analysis.split('\n'):
cv2.putText(display_frame, line[:80], (10, y_position),
cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0, 255, 0), 2)
y_position += 30
return display_frame, analysis
def create_gradio_interface():
"""
Create and launch the Gradio interface with webcam input
"""
try:
# Initialize the safety monitor
monitor = SafetyMonitor(model_name="mixtral-8x7b-vision")
with gr.Blocks() as demo:
gr.Markdown("""
# Real-time Safety Monitoring System
Click 'Start Webcam' to begin monitoring.
""")
with gr.Row():
# Webcam input
webcam = gr.Image(source="webcam", streaming=True, label="Webcam Feed")
# Analysis output
output_image = gr.Image(label="Analyzed Feed")
with gr.Row():
analysis_text = gr.Textbox(label="Safety Analysis", lines=5)
def analyze_stream(frame):
if frame is None:
return None, "Webcam not started"
processed_frame, analysis = monitor.process_frame(frame)
return processed_frame, analysis
webcam.stream(
fn=analyze_stream,
outputs=[output_image, analysis_text],
show_progress="hidden"
)
demo.queue()
demo.launch()
except ValueError as e:
print(f"Error: {e}")
print("Please make sure to set the GROQ_API_KEY environment variable")
if __name__ == "__main__":
create_gradio_interface() |