File size: 9,434 Bytes
7b04d4e 49a323c 7b04d4e 33fd6ad 75c2b7c 33fd6ad 1cddd79 5f3406b 9bf83e0 5f3406b b4f3ea6 740f7c7 5f3406b 1cddd79 e43f38f 1cddd79 740f7c7 30f620c 27eab0f 30f620c 27eab0f fc9e0d8 49a323c 27eab0f 9fd1d46 b4f3ea6 9fd1d46 27eab0f f2ae346 33fd6ad 1cddd79 f2ae346 1cddd79 1ae9e2e 5f3406b 1ae9e2e 5f3406b f2ae346 5f3406b 1cddd79 1ae9e2e e43f38f 1ae9e2e 1cddd79 1ae9e2e 1cddd79 e43f38f 7b04d4e 1ae9e2e 740f7c7 1ae9e2e 740f7c7 1ae9e2e 740f7c7 9bf83e0 740f7c7 9bf83e0 740f7c7 1ae9e2e 9bf83e0 1cddd79 30f4028 7b04d4e e43f38f 1ae9e2e 740f7c7 e43f38f 1cddd79 1ae9e2e 740f7c7 e43f38f 1ae9e2e 7b04d4e 1cddd79 7e6153d 7b04d4e 1cddd79 b4f3ea6 e43f38f 1cddd79 e43f38f 7b04d4e b4f3ea6 b6ce847 49a323c 27eab0f 9fd1d46 27eab0f 33fd6ad b4f3ea6 1cddd79 7b04d4e 1cddd79 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 |
import gradio as gr
import cv2
import numpy as np
from groq import Groq
import time
from PIL import Image as PILImage
import io
import os
import base64
def create_monitor_interface():
api_key = os.getenv("GROQ_API_KEY")
class SafetyMonitor:
def __init__(self):
self.client = Groq()
self.model_name = "llama-3.2-90b-vision-preview"
self.max_image_size = (800, 800)
self.colors = [(0, 0, 255), (255, 0, 0), (0, 255, 0), (255, 255, 0), (255, 0, 255)]
def analyze_frame(self, frame: np.ndarray) -> str:
if frame is None:
return ""
# Convert image
if len(frame.shape) == 2:
frame = cv2.cvtColor(frame, cv2.COLOR_GRAY2RGB)
elif len(frame.shape) == 3 and frame.shape[2] == 4:
frame = cv2.cvtColor(frame, cv2.COLOR_RGBA2RGB)
frame = self.resize_image(frame)
frame_pil = PILImage.fromarray(frame)
buffered = io.BytesIO()
frame_pil.save(buffered,
format="JPEG",
quality=85,
optimize=True)
img_base64 = base64.b64encode(buffered.getvalue()).decode('utf-8')
image_url = f"data:image/jpeg;base64,{img_base64}"
try:
completion = self.client.chat.completions.create(
model=self.model_name,
messages=[
{
"role": "system",
"content": "You are a safety analysis expert. Analyze images for safety concerns and provide detailed observations."
},
{
"role": "user",
"content": [
{
"type": "text",
"text": """Analyze this image for safety concerns and risks. For each issue you identify:
1. Specify the exact location in the image where the issue is visible
2. Describe what the safety concern is
3. Include any relevant details about PPE, posture, equipment, or environmental hazards
Format EACH observation exactly like this:
- <location>position:detailed description of the concern</location>
Example format:
- <location>center:Worker bending incorrectly while lifting heavy materials</location>
- <location>top-right:Missing safety guardrail near elevated platform</location>
Provide multiple observations if you see multiple issues."""
},
{
"type": "image_url",
"image_url": {
"url": image_url
}
}
]
}
],
temperature=0.5, # Increased for more varied observations
max_tokens=500,
stream=False
)
response = completion.choices[0].message.content
print(f"Raw response: {response}") # For debugging
return response
except Exception as e:
print(f"Analysis error: {str(e)}")
return ""
def resize_image(self, image):
height, width = image.shape[:2]
if height > self.max_image_size[1] or width > self.max_image_size[0]:
aspect = width / height
if width > height:
new_width = self.max_image_size[0]
new_height = int(new_width / aspect)
else:
new_height = self.max_image_size[1]
new_width = int(new_height * aspect)
return cv2.resize(image, (new_width, new_height), interpolation=cv2.INTER_AREA)
return image
def get_region_coordinates(self, position: str, image_shape: tuple) -> tuple:
height, width = image_shape[:2]
regions = {
'top-left': (0, 0, width//3, height//3),
'top': (width//3, 0, 2*width//3, height//3),
'top-right': (2*width//3, 0, width, height//3),
'left': (0, height//3, width//3, 2*height//3),
'center': (width//3, height//3, 2*width//3, 2*height//3),
'right': (2*width//3, height//3, width, 2*height//3),
'bottom-left': (0, 2*height//3, width//3, height),
'bottom': (width//3, 2*height//3, 2*width//3, height),
'bottom-right': (2*width//3, 2*height//3, width, height)
}
# Try to match the position with regions
matched_region = None
max_match_length = 0
position_lower = position.lower()
for region_name in regions:
if region_name in position_lower:
if len(region_name) > max_match_length:
matched_region = region_name
max_match_length = len(region_name)
if matched_region:
return regions[matched_region]
return regions['center']
def draw_observations(self, image, observations):
height, width = image.shape[:2]
font = cv2.FONT_HERSHEY_SIMPLEX
font_scale = 0.6
thickness = 2
for idx, obs in enumerate(observations):
color = self.colors[idx % len(self.colors)]
parts = obs.split(':')
if len(parts) >= 2:
position = parts[0]
description = ':'.join(parts[1:])
x1, y1, x2, y2 = self.get_region_coordinates(position, image.shape)
# Draw rectangle
cv2.rectangle(image, (x1, y1), (x2, y2), color, 2)
# Add label with background
label = description[:50] + "..." if len(description) > 50 else description
label_size = cv2.getTextSize(label, font, font_scale, thickness)[0]
label_x = max(0, min(x1, width - label_size[0]))
label_y = max(20, y1 - 5)
cv2.rectangle(image, (label_x, label_y - 20),
(label_x + label_size[0], label_y), color, -1)
cv2.putText(image, label, (label_x, label_y - 5),
font, font_scale, (255, 255, 255), thickness)
return image
def process_frame(self, frame: np.ndarray) -> tuple[np.ndarray, str]:
if frame is None:
return None, "No image provided"
analysis = self.analyze_frame(frame)
print(f"Analysis received: {analysis}") # Debug print
observations = []
for line in analysis.split('\n'):
line = line.strip()
if line.startswith('-'):
if '<location>' in line and '</location>' in line:
start = line.find('<location>') + len('<location>')
end = line.find('</location>')
observation = line[start:end].strip()
if observation and ':' in observation:
observations.append(observation)
print(f"Parsed observations: {observations}") # Debug print
display_frame = frame.copy()
if observations:
annotated_frame = self.draw_observations(display_frame, observations)
return annotated_frame, analysis
# If no observations were found but we got some analysis
if analysis and not analysis.isspace():
return display_frame, analysis
return display_frame, "Please try again - no safety analysis was generated."
monitor = SafetyMonitor()
with gr.Blocks() as demo:
gr.Markdown("# Safety Analysis System powered by Llama 3.2 90b vision")
with gr.Row():
input_image = gr.Image(label="Upload Image")
output_image = gr.Image(label="Analysis Results")
analysis_text = gr.Textbox(label="Safety Analysis", lines=5)
def analyze_image(image):
if image is None:
return None, "No image provided"
try:
processed_frame, analysis = monitor.process_frame(image)
return processed_frame, analysis
except Exception as e:
print(f"Processing error: {str(e)}")
return None, f"Error processing image: {str(e)}"
input_image.change(
fn=analyze_image,
inputs=input_image,
outputs=[output_image, analysis_text]
)
return demo
demo = create_monitor_interface()
demo.launch() |