File size: 9,434 Bytes
7b04d4e
 
 
 
 
49a323c
7b04d4e
33fd6ad
75c2b7c
33fd6ad
1cddd79
 
 
 
5f3406b
9bf83e0
5f3406b
b4f3ea6
740f7c7
5f3406b
1cddd79
 
e43f38f
1cddd79
740f7c7
30f620c
27eab0f
30f620c
27eab0f
fc9e0d8
 
49a323c
27eab0f
 
9fd1d46
 
b4f3ea6
9fd1d46
27eab0f
f2ae346
33fd6ad
1cddd79
 
f2ae346
1cddd79
1ae9e2e
 
 
 
5f3406b
 
 
 
 
1ae9e2e
 
 
 
 
 
 
 
 
 
 
 
 
 
5f3406b
 
 
f2ae346
 
 
5f3406b
 
1cddd79
 
1ae9e2e
e43f38f
1ae9e2e
1cddd79
1ae9e2e
 
 
 
 
1cddd79
e43f38f
 
7b04d4e
1ae9e2e
 
 
 
 
 
 
 
 
 
 
 
 
740f7c7
 
 
 
 
 
 
 
 
 
 
 
 
 
1ae9e2e
 
 
 
 
 
 
 
 
 
740f7c7
1ae9e2e
 
740f7c7
 
9bf83e0
 
 
740f7c7
9bf83e0
 
 
 
 
740f7c7
 
 
 
1ae9e2e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9bf83e0
 
 
1cddd79
 
30f4028
7b04d4e
e43f38f
1ae9e2e
740f7c7
e43f38f
 
 
 
 
 
 
 
 
 
1cddd79
1ae9e2e
 
740f7c7
e43f38f
 
 
1ae9e2e
 
 
 
 
 
7b04d4e
1cddd79
 
 
7e6153d
7b04d4e
1cddd79
b4f3ea6
e43f38f
1cddd79
e43f38f
7b04d4e
b4f3ea6
b6ce847
49a323c
27eab0f
 
 
 
9fd1d46
27eab0f
33fd6ad
b4f3ea6
 
 
 
1cddd79
7b04d4e
1cddd79
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
import gradio as gr
import cv2
import numpy as np
from groq import Groq
import time
from PIL import Image as PILImage
import io
import os
import base64

def create_monitor_interface():
    api_key = os.getenv("GROQ_API_KEY")
    
    class SafetyMonitor:
        def __init__(self):
            self.client = Groq()
            self.model_name = "llama-3.2-90b-vision-preview"
            self.max_image_size = (800, 800)
            self.colors = [(0, 0, 255), (255, 0, 0), (0, 255, 0), (255, 255, 0), (255, 0, 255)]
            
        def analyze_frame(self, frame: np.ndarray) -> str:
            if frame is None:
                return ""
                
            # Convert image
            if len(frame.shape) == 2:
                frame = cv2.cvtColor(frame, cv2.COLOR_GRAY2RGB)
            elif len(frame.shape) == 3 and frame.shape[2] == 4:
                frame = cv2.cvtColor(frame, cv2.COLOR_RGBA2RGB)
            
            frame = self.resize_image(frame)
            frame_pil = PILImage.fromarray(frame)
            
            buffered = io.BytesIO()
            frame_pil.save(buffered, 
                         format="JPEG", 
                         quality=85,
                         optimize=True)
            img_base64 = base64.b64encode(buffered.getvalue()).decode('utf-8')
            image_url = f"data:image/jpeg;base64,{img_base64}"
            
            try:
                completion = self.client.chat.completions.create(
                    model=self.model_name,
                    messages=[
                        {
                            "role": "system",
                            "content": "You are a safety analysis expert. Analyze images for safety concerns and provide detailed observations."
                        },
                        {
                            "role": "user",
                            "content": [
                                {
                                    "type": "text",
                                    "text": """Analyze this image for safety concerns and risks. For each issue you identify:

1. Specify the exact location in the image where the issue is visible
2. Describe what the safety concern is
3. Include any relevant details about PPE, posture, equipment, or environmental hazards

Format EACH observation exactly like this:
- <location>position:detailed description of the concern</location>

Example format:
- <location>center:Worker bending incorrectly while lifting heavy materials</location>
- <location>top-right:Missing safety guardrail near elevated platform</location>

Provide multiple observations if you see multiple issues."""
                                },
                                {
                                    "type": "image_url",
                                    "image_url": {
                                        "url": image_url
                                    }
                                }
                            ]
                        }
                    ],
                    temperature=0.5,  # Increased for more varied observations
                    max_tokens=500,
                    stream=False
                )
                
                response = completion.choices[0].message.content
                print(f"Raw response: {response}")  # For debugging
                return response
                
            except Exception as e:
                print(f"Analysis error: {str(e)}")
                return ""

        def resize_image(self, image):
            height, width = image.shape[:2]
            if height > self.max_image_size[1] or width > self.max_image_size[0]:
                aspect = width / height
                if width > height:
                    new_width = self.max_image_size[0]
                    new_height = int(new_width / aspect)
                else:
                    new_height = self.max_image_size[1]
                    new_width = int(new_height * aspect)
                return cv2.resize(image, (new_width, new_height), interpolation=cv2.INTER_AREA)
            return image

        def get_region_coordinates(self, position: str, image_shape: tuple) -> tuple:
            height, width = image_shape[:2]
            regions = {
                'top-left': (0, 0, width//3, height//3),
                'top': (width//3, 0, 2*width//3, height//3),
                'top-right': (2*width//3, 0, width, height//3),
                'left': (0, height//3, width//3, 2*height//3),
                'center': (width//3, height//3, 2*width//3, 2*height//3),
                'right': (2*width//3, height//3, width, 2*height//3),
                'bottom-left': (0, 2*height//3, width//3, height),
                'bottom': (width//3, 2*height//3, 2*width//3, height),
                'bottom-right': (2*width//3, 2*height//3, width, height)
            }
            
            # Try to match the position with regions
            matched_region = None
            max_match_length = 0
            position_lower = position.lower()
            
            for region_name in regions:
                if region_name in position_lower:
                    if len(region_name) > max_match_length:
                        matched_region = region_name
                        max_match_length = len(region_name)
            
            if matched_region:
                return regions[matched_region]
            return regions['center']

        def draw_observations(self, image, observations):
            height, width = image.shape[:2]
            font = cv2.FONT_HERSHEY_SIMPLEX
            font_scale = 0.6
            thickness = 2
            
            for idx, obs in enumerate(observations):
                color = self.colors[idx % len(self.colors)]
                
                parts = obs.split(':')
                if len(parts) >= 2:
                    position = parts[0]
                    description = ':'.join(parts[1:])
                    
                    x1, y1, x2, y2 = self.get_region_coordinates(position, image.shape)
                    
                    # Draw rectangle
                    cv2.rectangle(image, (x1, y1), (x2, y2), color, 2)
                    
                    # Add label with background
                    label = description[:50] + "..." if len(description) > 50 else description
                    label_size = cv2.getTextSize(label, font, font_scale, thickness)[0]
                    
                    label_x = max(0, min(x1, width - label_size[0]))
                    label_y = max(20, y1 - 5)
                    
                    cv2.rectangle(image, (label_x, label_y - 20), 
                                (label_x + label_size[0], label_y), color, -1)
                    cv2.putText(image, label, (label_x, label_y - 5), 
                              font, font_scale, (255, 255, 255), thickness)
            
            return image

        def process_frame(self, frame: np.ndarray) -> tuple[np.ndarray, str]:
            if frame is None:
                return None, "No image provided"
            
            analysis = self.analyze_frame(frame)
            print(f"Analysis received: {analysis}")  # Debug print
            
            observations = []
            for line in analysis.split('\n'):
                line = line.strip()
                if line.startswith('-'):
                    if '<location>' in line and '</location>' in line:
                        start = line.find('<location>') + len('<location>')
                        end = line.find('</location>')
                        observation = line[start:end].strip()
                        if observation and ':' in observation:
                            observations.append(observation)
            
            print(f"Parsed observations: {observations}")  # Debug print
            
            display_frame = frame.copy()
            if observations:
                annotated_frame = self.draw_observations(display_frame, observations)
                return annotated_frame, analysis
            
            # If no observations were found but we got some analysis
            if analysis and not analysis.isspace():
                return display_frame, analysis
            
            return display_frame, "Please try again - no safety analysis was generated."

    monitor = SafetyMonitor()
    
    with gr.Blocks() as demo:
        gr.Markdown("# Safety Analysis System powered by Llama 3.2 90b vision")
        
        with gr.Row():
            input_image = gr.Image(label="Upload Image")
            output_image = gr.Image(label="Analysis Results")
        
        analysis_text = gr.Textbox(label="Safety Analysis", lines=5)
            
        def analyze_image(image):
            if image is None:
                return None, "No image provided"
            try:
                processed_frame, analysis = monitor.process_frame(image)
                return processed_frame, analysis
            except Exception as e:
                print(f"Processing error: {str(e)}")
                return None, f"Error processing image: {str(e)}"
            
        input_image.change(
            fn=analyze_image,
            inputs=input_image,
            outputs=[output_image, analysis_text]
        )

    return demo

demo = create_monitor_interface()
demo.launch()