capradeepgujaran commited on
Commit
0b47f85
·
verified ·
1 Parent(s): 17e6c9d

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +5 -7
app.py CHANGED
@@ -37,7 +37,7 @@ class VideoProcessor:
37
  self.batch_size = 4 if torch.cuda.is_available() else 2
38
 
39
  def load_models(self):
40
- """Load models with optimizations and proper configurations"""
41
  print("Loading CLIP model...")
42
  self.clip_model = CLIPModel.from_pretrained(
43
  "openai/clip-vit-base-patch32",
@@ -48,18 +48,16 @@ class VideoProcessor:
48
  "openai/clip-vit-base-patch32",
49
  cache_dir="./model_cache"
50
  )
51
-
52
  print("Loading BLIP2 model...")
53
  model_name = "Salesforce/blip2-opt-2.7b"
54
 
55
- # Initialize BLIP2 processor with updated configuration
56
  self.blip_processor = Blip2Processor.from_pretrained(
57
  model_name,
58
  cache_dir="./model_cache"
59
  )
60
- self.blip_processor.config.use_fast_tokenizer = True
61
- self.blip_processor.config.processor_class = "Blip2Processor"
62
-
63
  # Load BLIP2 model with optimizations
64
  self.blip_model = Blip2ForConditionalGeneration.from_pretrained(
65
  model_name,
@@ -68,7 +66,7 @@ class VideoProcessor:
68
  cache_dir="./model_cache",
69
  low_cpu_mem_usage=True
70
  ).to(self.device)
71
-
72
  # Set models to evaluation mode
73
  self.clip_model.eval()
74
  self.blip_model.eval()
 
37
  self.batch_size = 4 if torch.cuda.is_available() else 2
38
 
39
  def load_models(self):
40
+ """Load models with optimizations and proper configurations"""
41
  print("Loading CLIP model...")
42
  self.clip_model = CLIPModel.from_pretrained(
43
  "openai/clip-vit-base-patch32",
 
48
  "openai/clip-vit-base-patch32",
49
  cache_dir="./model_cache"
50
  )
51
+
52
  print("Loading BLIP2 model...")
53
  model_name = "Salesforce/blip2-opt-2.7b"
54
 
55
+ # Initialize BLIP2 processor without config modifications
56
  self.blip_processor = Blip2Processor.from_pretrained(
57
  model_name,
58
  cache_dir="./model_cache"
59
  )
60
+
 
 
61
  # Load BLIP2 model with optimizations
62
  self.blip_model = Blip2ForConditionalGeneration.from_pretrained(
63
  model_name,
 
66
  cache_dir="./model_cache",
67
  low_cpu_mem_usage=True
68
  ).to(self.device)
69
+
70
  # Set models to evaluation mode
71
  self.clip_model.eval()
72
  self.blip_model.eval()