import gradio as gr import os from dotenv import load_dotenv import pandas as pd from groq import Groq from PIL import Image import base64 import io import openpyxl from datetime import datetime import httpx # Load environment variables from .env file load_dotenv() def create_groq_client(): api_key = os.environ.get("GROQ_API_KEY", "") return httpx.Client( base_url="https://api.groq.com/openai/v1", headers={"Authorization": f"Bearer {api_key}"} ) def encode_image_to_base64(image_path): """Convert image to base64 string""" with open(image_path, "rb") as image_file: return base64.b64encode(image_file.read()).decode('utf-8') def extract_invoice_details(image): """Extract invoice details using Groq's vision model""" # Save the uploaded image temporarily temp_path = "temp_invoice.png" image.save(temp_path) # Convert image to base64 base64_image = encode_image_to_base64(temp_path) # Remove temporary file os.remove(temp_path) # Prepare the prompt prompt = """Analyze this invoice image and provide ONLY ONE dictionary with the following format, including all line items. Remove any special characters (*, #, $) and format numbers as plain decimal values: { "Invoice Number": "inv-00", # Remove special chars, keep alphanumeric only "Invoice Date": "07/07/2025", # Use MM/DD/YYYY format "Items": [ { "Item Name": "Product 1", # Clean text only "Price/Rate": "40.00", # Numeric only "Quantity": "2", # Numeric only "Amount": "80.00" # Numeric only } ], "Total Invoice Value": "2555.00" # Numeric only, total amount } Provide ONLY the dictionary, no additional text or formatting.""" # Make API call to Groq client = create_groq_client() response = client.post( "/chat/completions", json={ "model": "llama-3.2-90b-vision-preview", "messages": [ { "role": "user", "content": [ { "type": "image_url", "image_url": { "url": f"data:image/png;base64,{base64_image}" } }, { "type": "text", "text": prompt } ] } ] } ) response_data = response.json() return response_data['choices'][0]['message']['content'] def parse_response(response_text): """Parse the model's response into structured data""" try: # Find the dictionary part of the response start_idx = response_text.find('{') end_idx = response_text.rfind('}') + 1 if start_idx != -1 and end_idx != -1: dict_str = response_text[start_idx:end_idx] # Safely evaluate the dictionary string data = eval(dict_str) # Create rows for each item in the items list rows = [] for item in data.get('Items', []): row = { 'Invoice Number': data.get('Invoice Number', ''), 'Invoice Date': data.get('Invoice Date', ''), 'Item Name': item.get('Item Name', ''), 'Price/Rate': item.get('Price/Rate', ''), 'Quantity': item.get('Quantity', ''), 'Amount': item.get('Amount', ''), 'Total Invoice Value': data.get('Total Invoice Value', '') } rows.append(row) return rows except Exception as e: print(f"Error parsing response: {e}") return [{ 'Invoice Number': '', 'Invoice Date': '', 'Item Name': '', 'Price/Rate': '', 'Quantity': '', 'Amount': '', 'Total Invoice Value': '' }] def save_to_excel(data_rows): """Save cleaned extracted data to Excel file""" excel_file = "invoice_data.xlsx" # Create new DataFrame with the current data only df = pd.DataFrame(data_rows, columns=[ 'Invoice Number', 'Invoice Date', 'Item Name', 'Price/Rate', 'Quantity', 'Amount', 'Total Invoice Value' ]) # Apply number formatting for currency columns currency_columns = ['Price/Rate', 'Amount', 'Total Invoice Value'] for col in currency_columns: df[col] = pd.to_numeric(df[col], errors='ignore') # Save to Excel with formatting with pd.ExcelWriter(excel_file, engine='openpyxl') as writer: df.to_excel(writer, index=False, sheet_name='Invoice Data') # Get the workbook and worksheet workbook = writer.book worksheet = writer.sheets['Invoice Data'] # Apply currency formatting to relevant columns for col_idx, col_name in enumerate(df.columns): if col_name in currency_columns: for row in range(2, len(df) + 2): # Start from row 2 to skip header cell = worksheet.cell(row=row, column=col_idx + 1) cell.number_format = '$#,##0.00' return excel_file def process_invoice(image): """Main function to process invoice image""" try: # Extract text from image extracted_text = extract_invoice_details(image) # Parse the response data = parse_response(extracted_text) # Save to Excel excel_path = save_to_excel(data) return ( f"Successfully processed invoice!\n\n" f"Extracted Information:\n{extracted_text}", excel_path ) except Exception as e: return f"Error processing invoice: {str(e)}", None # Create Gradio interface iface = gr.Interface( fn=process_invoice, inputs=gr.Image(type="pil", label="Upload Handwritten Invoice"), outputs=[ gr.Textbox(label="Processing Result"), gr.File(label="Download Excel File") ], title="Handwritten Invoice Processor", description="Upload a handwritten invoice to extract key information and save it to Excel.", examples=[], theme=gr.themes.Base() ) # Launch the application if __name__ == "__main__": iface.launch(server_name="0.0.0.0", server_port=7860)