Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,193 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import os
|
3 |
+
from dotenv import load_dotenv
|
4 |
+
import pandas as pd
|
5 |
+
from groq import Groq
|
6 |
+
from PIL import Image
|
7 |
+
import base64
|
8 |
+
import io
|
9 |
+
import openpyxl
|
10 |
+
from datetime import datetime
|
11 |
+
|
12 |
+
# Load environment variables from .env file
|
13 |
+
load_dotenv()
|
14 |
+
|
15 |
+
# Initialize Groq client
|
16 |
+
client = Groq(
|
17 |
+
api_key=os.environ.get("GROQ_API_KEY")
|
18 |
+
)
|
19 |
+
|
20 |
+
def encode_image_to_base64(image_path):
|
21 |
+
"""Convert image to base64 string"""
|
22 |
+
with open(image_path, "rb") as image_file:
|
23 |
+
return base64.b64encode(image_file.read()).decode('utf-8')
|
24 |
+
|
25 |
+
def extract_invoice_details(image):
|
26 |
+
"""Extract invoice details using Groq's vision model"""
|
27 |
+
# Save the uploaded image temporarily
|
28 |
+
temp_path = "temp_invoice.png"
|
29 |
+
image.save(temp_path)
|
30 |
+
|
31 |
+
# Convert image to base64
|
32 |
+
base64_image = encode_image_to_base64(temp_path)
|
33 |
+
|
34 |
+
# Remove temporary file
|
35 |
+
os.remove(temp_path)
|
36 |
+
|
37 |
+
# Prepare the prompt
|
38 |
+
prompt = """Analyze this invoice image and provide ONLY ONE dictionary with the following format, including all line items. Remove any special characters (*, #, $) and format numbers as plain decimal values:
|
39 |
+
|
40 |
+
{
|
41 |
+
"Invoice Number": "inv-00", # Remove special chars, keep alphanumeric only
|
42 |
+
"Invoice Date": "07/07/2025", # Use MM/DD/YYYY format
|
43 |
+
"Items": [
|
44 |
+
{
|
45 |
+
"Item Name": "Product 1", # Clean text only
|
46 |
+
"Price/Rate": "40.00", # Numeric only
|
47 |
+
"Quantity": "2", # Numeric only
|
48 |
+
"Amount": "80.00" # Numeric only
|
49 |
+
},
|
50 |
+
{
|
51 |
+
"Item Name": "Product 2",
|
52 |
+
"Price/Rate": "19.00",
|
53 |
+
"Quantity": "6",
|
54 |
+
"Amount": "114.00"
|
55 |
+
}
|
56 |
+
],
|
57 |
+
"Total Invoice Value": "2555.00" # Numeric only, total amount
|
58 |
+
}
|
59 |
+
|
60 |
+
Provide ONLY the dictionary, no additional text or formatting."""
|
61 |
+
|
62 |
+
# Make API call to Groq
|
63 |
+
response = client.chat.completions.create(
|
64 |
+
model="llama-3.2-90b-vision-preview",
|
65 |
+
messages=[
|
66 |
+
{
|
67 |
+
"role": "user",
|
68 |
+
"content": [
|
69 |
+
{
|
70 |
+
"type": "image_url",
|
71 |
+
"image_url": {
|
72 |
+
"url": f"data:image/png;base64,{base64_image}"
|
73 |
+
}
|
74 |
+
},
|
75 |
+
{
|
76 |
+
"type": "text",
|
77 |
+
"text": prompt
|
78 |
+
}
|
79 |
+
]
|
80 |
+
}
|
81 |
+
]
|
82 |
+
)
|
83 |
+
|
84 |
+
return response.choices[0].message.content
|
85 |
+
|
86 |
+
def parse_response(response_text):
|
87 |
+
"""Parse the model's response into structured data"""
|
88 |
+
try:
|
89 |
+
# Find the dictionary part of the response
|
90 |
+
start_idx = response_text.find('{')
|
91 |
+
end_idx = response_text.rfind('}') + 1
|
92 |
+
if start_idx != -1 and end_idx != -1:
|
93 |
+
dict_str = response_text[start_idx:end_idx]
|
94 |
+
# Safely evaluate the dictionary string
|
95 |
+
data = eval(dict_str)
|
96 |
+
|
97 |
+
# Create rows for each item in the items list
|
98 |
+
rows = []
|
99 |
+
for item in data.get('Items', []):
|
100 |
+
row = {
|
101 |
+
'Invoice Number': data.get('Invoice Number', ''),
|
102 |
+
'Invoice Date': data.get('Invoice Date', ''),
|
103 |
+
'Item Name': item.get('Item Name', ''),
|
104 |
+
'Price/Rate': item.get('Price/Rate', ''),
|
105 |
+
'Quantity': item.get('Quantity', ''),
|
106 |
+
'Amount': item.get('Amount', ''),
|
107 |
+
'Total Invoice Value': data.get('Total Invoice Value', '')
|
108 |
+
}
|
109 |
+
rows.append(row)
|
110 |
+
|
111 |
+
return rows
|
112 |
+
except Exception as e:
|
113 |
+
print(f"Error parsing response: {e}")
|
114 |
+
return [{
|
115 |
+
'Invoice Number': '',
|
116 |
+
'Invoice Date': '',
|
117 |
+
'Item Name': '',
|
118 |
+
'Price/Rate': '',
|
119 |
+
'Quantity': '',
|
120 |
+
'Amount': '',
|
121 |
+
'Total Invoice Value': ''
|
122 |
+
}]
|
123 |
+
|
124 |
+
def save_to_excel(data_rows):
|
125 |
+
"""Save cleaned extracted data to Excel file"""
|
126 |
+
excel_file = "invoice_data.xlsx"
|
127 |
+
|
128 |
+
# Create new DataFrame with the current data only
|
129 |
+
df = pd.DataFrame(data_rows, columns=[
|
130 |
+
'Invoice Number', 'Invoice Date', 'Item Name',
|
131 |
+
'Price/Rate', 'Quantity', 'Amount', 'Total Invoice Value'
|
132 |
+
])
|
133 |
+
|
134 |
+
# Apply number formatting for currency columns
|
135 |
+
currency_columns = ['Price/Rate', 'Amount', 'Total Invoice Value']
|
136 |
+
for col in currency_columns:
|
137 |
+
df[col] = pd.to_numeric(df[col], errors='ignore')
|
138 |
+
|
139 |
+
# Save to Excel with formatting
|
140 |
+
with pd.ExcelWriter(excel_file, engine='openpyxl') as writer:
|
141 |
+
df.to_excel(writer, index=False, sheet_name='Invoice Data')
|
142 |
+
|
143 |
+
# Get the workbook and worksheet
|
144 |
+
workbook = writer.book
|
145 |
+
worksheet = writer.sheets['Invoice Data']
|
146 |
+
|
147 |
+
# Apply currency formatting to relevant columns
|
148 |
+
for col_idx, col_name in enumerate(df.columns):
|
149 |
+
if col_name in currency_columns:
|
150 |
+
for row in range(2, len(df) + 2): # Start from row 2 to skip header
|
151 |
+
cell = worksheet.cell(row=row, column=col_idx + 1)
|
152 |
+
cell.number_format = '$#,##0.00'
|
153 |
+
|
154 |
+
return excel_file
|
155 |
+
|
156 |
+
def process_invoice(image):
|
157 |
+
"""Main function to process invoice image"""
|
158 |
+
try:
|
159 |
+
# Extract text from image
|
160 |
+
extracted_text = extract_invoice_details(image)
|
161 |
+
|
162 |
+
# Parse the response
|
163 |
+
data = parse_response(extracted_text)
|
164 |
+
|
165 |
+
# Save to Excel
|
166 |
+
excel_path = save_to_excel(data)
|
167 |
+
|
168 |
+
return (
|
169 |
+
f"Successfully processed invoice!\n\n"
|
170 |
+
f"Extracted Information:\n{extracted_text}",
|
171 |
+
excel_path
|
172 |
+
)
|
173 |
+
|
174 |
+
except Exception as e:
|
175 |
+
return f"Error processing invoice: {str(e)}", None
|
176 |
+
|
177 |
+
# Create Gradio interface
|
178 |
+
iface = gr.Interface(
|
179 |
+
fn=process_invoice,
|
180 |
+
inputs=gr.Image(type="pil", label="Upload Handwritten Invoice"),
|
181 |
+
outputs=[
|
182 |
+
gr.Textbox(label="Processing Result"),
|
183 |
+
gr.File(label="Download Excel File")
|
184 |
+
],
|
185 |
+
title="Handwritten Invoice Processor",
|
186 |
+
description="Upload a handwritten invoice to extract key information and save it to Excel.",
|
187 |
+
examples=[],
|
188 |
+
theme=gr.themes.Base()
|
189 |
+
)
|
190 |
+
|
191 |
+
# Launch the application
|
192 |
+
if __name__ == "__main__":
|
193 |
+
iface.launch()
|