|
import gradio as gr |
|
import os |
|
from dotenv import load_dotenv |
|
import pandas as pd |
|
from groq import Groq |
|
from PIL import Image |
|
import base64 |
|
import io |
|
import openpyxl |
|
from datetime import datetime |
|
import httpx |
|
|
|
|
|
load_dotenv() |
|
|
|
def create_groq_client(): |
|
api_key = os.environ.get("GROQ_API_KEY", "") |
|
return httpx.Client( |
|
base_url="https://api.groq.com/openai/v1", |
|
headers={"Authorization": f"Bearer {api_key}"} |
|
) |
|
|
|
def encode_image_to_base64(image_path): |
|
"""Convert image to base64 string""" |
|
with open(image_path, "rb") as image_file: |
|
return base64.b64encode(image_file.read()).decode('utf-8') |
|
|
|
def extract_invoice_details(image): |
|
"""Extract invoice details using Groq's vision model""" |
|
|
|
temp_path = "temp_invoice.png" |
|
image.save(temp_path) |
|
|
|
|
|
base64_image = encode_image_to_base64(temp_path) |
|
|
|
|
|
os.remove(temp_path) |
|
|
|
|
|
prompt = """Analyze this invoice image and provide ONLY ONE dictionary with the following format, including all line items. Remove any special characters (*, #, $) and format numbers as plain decimal values: |
|
|
|
{ |
|
"Invoice Number": "inv-00", # Remove special chars, keep alphanumeric only |
|
"Invoice Date": "07/07/2025", # Use MM/DD/YYYY format |
|
"Items": [ |
|
{ |
|
"Item Name": "Product 1", # Clean text only |
|
"Price/Rate": "40.00", # Numeric only |
|
"Quantity": "2", # Numeric only |
|
"Amount": "80.00" # Numeric only |
|
} |
|
], |
|
"Total Invoice Value": "2555.00" # Numeric only, total amount |
|
} |
|
|
|
Provide ONLY the dictionary, no additional text or formatting.""" |
|
|
|
|
|
client = create_groq_client() |
|
response = client.post( |
|
"/chat/completions", |
|
json={ |
|
"model": "llama-3.2-90b-vision-preview", |
|
"messages": [ |
|
{ |
|
"role": "user", |
|
"content": [ |
|
{ |
|
"type": "image_url", |
|
"image_url": { |
|
"url": f"data:image/png;base64,{base64_image}" |
|
} |
|
}, |
|
{ |
|
"type": "text", |
|
"text": prompt |
|
} |
|
] |
|
} |
|
] |
|
} |
|
) |
|
response_data = response.json() |
|
return response_data['choices'][0]['message']['content'] |
|
|
|
def parse_response(response_text): |
|
"""Parse the model's response into structured data""" |
|
try: |
|
|
|
start_idx = response_text.find('{') |
|
end_idx = response_text.rfind('}') + 1 |
|
if start_idx != -1 and end_idx != -1: |
|
dict_str = response_text[start_idx:end_idx] |
|
|
|
data = eval(dict_str) |
|
|
|
|
|
rows = [] |
|
for item in data.get('Items', []): |
|
row = { |
|
'Invoice Number': data.get('Invoice Number', ''), |
|
'Invoice Date': data.get('Invoice Date', ''), |
|
'Item Name': item.get('Item Name', ''), |
|
'Price/Rate': item.get('Price/Rate', ''), |
|
'Quantity': item.get('Quantity', ''), |
|
'Amount': item.get('Amount', ''), |
|
'Total Invoice Value': data.get('Total Invoice Value', '') |
|
} |
|
rows.append(row) |
|
|
|
return rows |
|
except Exception as e: |
|
print(f"Error parsing response: {e}") |
|
return [{ |
|
'Invoice Number': '', |
|
'Invoice Date': '', |
|
'Item Name': '', |
|
'Price/Rate': '', |
|
'Quantity': '', |
|
'Amount': '', |
|
'Total Invoice Value': '' |
|
}] |
|
|
|
def save_to_excel(data_rows): |
|
"""Save cleaned extracted data to Excel file""" |
|
excel_file = "invoice_data.xlsx" |
|
|
|
|
|
df = pd.DataFrame(data_rows, columns=[ |
|
'Invoice Number', 'Invoice Date', 'Item Name', |
|
'Price/Rate', 'Quantity', 'Amount', 'Total Invoice Value' |
|
]) |
|
|
|
|
|
currency_columns = ['Price/Rate', 'Amount', 'Total Invoice Value'] |
|
for col in currency_columns: |
|
df[col] = pd.to_numeric(df[col], errors='ignore') |
|
|
|
|
|
with pd.ExcelWriter(excel_file, engine='openpyxl') as writer: |
|
df.to_excel(writer, index=False, sheet_name='Invoice Data') |
|
|
|
|
|
workbook = writer.book |
|
worksheet = writer.sheets['Invoice Data'] |
|
|
|
|
|
for col_idx, col_name in enumerate(df.columns): |
|
if col_name in currency_columns: |
|
for row in range(2, len(df) + 2): |
|
cell = worksheet.cell(row=row, column=col_idx + 1) |
|
cell.number_format = '$#,##0.00' |
|
|
|
return excel_file |
|
|
|
def process_invoice(image): |
|
"""Main function to process invoice image""" |
|
try: |
|
|
|
extracted_text = extract_invoice_details(image) |
|
|
|
|
|
data = parse_response(extracted_text) |
|
|
|
|
|
excel_path = save_to_excel(data) |
|
|
|
return ( |
|
f"Successfully processed invoice!\n\n" |
|
f"Extracted Information:\n{extracted_text}", |
|
excel_path |
|
) |
|
|
|
except Exception as e: |
|
return f"Error processing invoice: {str(e)}", None |
|
|
|
|
|
iface = gr.Interface( |
|
fn=process_invoice, |
|
inputs=gr.Image(type="pil", label="Upload Handwritten Invoice"), |
|
outputs=[ |
|
gr.Textbox(label="Processing Result"), |
|
gr.File(label="Download Excel File") |
|
], |
|
title="Handwritten Invoice Processor", |
|
description="Upload a handwritten invoice to extract key information and save it to Excel.", |
|
examples=[], |
|
theme=gr.themes.Base() |
|
) |
|
|
|
|
|
if __name__ == "__main__": |
|
iface.launch(server_name="0.0.0.0", server_port=7860) |