File size: 4,539 Bytes
10b5661
 
4ec8ad4
 
10b5661
85d2f78
c8ee59e
e2524e7
 
 
 
 
4ec8ad4
10b5661
 
e2524e7
 
 
10b5661
c8ee59e
 
4ec8ad4
85d2f78
e2524e7
 
 
 
 
 
 
 
 
 
 
 
 
85d2f78
 
10b5661
e2524e7
10b5661
 
 
e2524e7
85d2f78
10b5661
85d2f78
 
 
 
 
 
e2524e7
85d2f78
 
 
 
 
c8ee59e
85d2f78
 
 
 
 
 
 
 
 
 
 
e2524e7
85d2f78
e2524e7
85d2f78
c8ee59e
85d2f78
c8ee59e
 
85d2f78
c8ee59e
 
10b5661
e2524e7
 
 
 
 
 
 
 
 
 
ef42063
e2524e7
 
 
10b5661
e2524e7
10b5661
 
e2524e7
10b5661
4ec8ad4
 
 
 
85d2f78
 
 
 
4ec8ad4
 
 
 
 
85d2f78
 
10b5661
85d2f78
 
10b5661
e2524e7
10b5661
4ec8ad4
 
 
10b5661
e2524e7
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
import os
import base64
import gradio as gr
from PIL import Image
import io
import json
from groq import Groq
import logging

# Set up logging
logging.basicConfig(level=logging.DEBUG)
logger = logging.getLogger(__name__)

# Load environment variables
GROQ_API_KEY = os.environ.get("GROQ_API_KEY")
if not GROQ_API_KEY:
    logger.error("GROQ_API_KEY is not set in environment variables")
    raise ValueError("GROQ_API_KEY is not set")

# Initialize Groq client
client = Groq(api_key=GROQ_API_KEY)

def encode_image(image):
    try:
        if isinstance(image, str):  # If image is a file path
            with open(image, "rb") as image_file:
                return base64.b64encode(image_file.read()).decode('utf-8')
        elif isinstance(image, Image.Image):  # If image is a PIL Image
            buffered = io.BytesIO()
            image.save(buffered, format="PNG")
            return base64.b64encode(buffered.getvalue()).decode('utf-8')
        else:
            raise ValueError(f"Unsupported image type: {type(image)}")
    except Exception as e:
        logger.error(f"Error encoding image: {str(e)}")
        raise

def analyze_construction_image(image, follow_up_question=""):
    if image is None:
        logger.warning("No image provided")
        return "Error: No image uploaded", "", ""

    try:
        logger.info("Starting image analysis")
        image_data_url = f"data:image/png;base64,{encode_image(image)}"

        messages = [
            {
                "role": "user",
                "content": [
                    {
                        "type": "text",
                        "text": "Analyze this construction site image. Identify any issues or snags, categorize them, provide a detailed description, and suggest steps to resolve them. Format your response as a JSON object with keys 'snag_category', 'snag_description', and 'desnag_steps' (as an array)."
                    },
                    {
                        "type": "image_url",
                        "image_url": {
                            "url": image_data_url
                        }
                    }
                ]
            }
        ]

        if follow_up_question:
            messages.append({
                "role": "user",
                "content": follow_up_question
            })

        logger.info("Sending request to Groq API")
        completion = client.chat.completions.create(
            model="llama-3.2-90b-vision-preview",
            messages=messages,
            temperature=0.7,
            max_tokens=1000,
            top_p=1,
            stream=False,
            response_format={"type": "json_object"},
            stop=None
        )

        logger.info("Received response from Groq API")
        result = completion.choices[0].message.content
        logger.debug(f"Raw API response: {result}")

        # Try to parse the result as JSON
        try:
            parsed_result = json.loads(result)
        except json.JSONDecodeError:
            logger.error("Failed to parse API response as JSON")
            return "Error: Invalid response format", "", ""

        snag_category = parsed_result.get('snag_category', 'N/A')
        snag_description = parsed_result.get('snag_description', 'N/A')
        desnag_steps = '\n'.join(parsed_result.get('desnag_steps', ['N/A']))

        logger.info("Analysis completed successfully")
        return snag_category, snag_description, desnag_steps
    except Exception as e:
        logger.error(f"Error during image analysis: {str(e)}")
        return f"Error: {str(e)}", "", ""

# Create the Gradio interface
iface = gr.Interface(
    fn=analyze_construction_image,
    inputs=[
        gr.Image(type="pil", label="Upload Construction Image"),
        gr.Textbox(label="Follow-up Question (Optional)")
    ],
    outputs=[
        gr.Textbox(label="Snag Category"),
        gr.Textbox(label="Snag Description"),
        gr.Textbox(label="Steps to Desnag")
    ],
    title="Construction Image Analyzer (Llama 3.2 90B Vision via Groq)",
    description="Upload a construction site image to identify issues and get desnag steps using Llama 3.2 90B Vision technology through Groq API. You can also ask follow-up questions about the image.",
    examples=[
        ["example_image1.jpg", "What safety concerns do you see?"],
        ["example_image2.jpg", "Is there any visible structural damage?"]
    ],
    cache_examples=False,
    theme="default"
)

# Launch the app
if __name__ == "__main__":
    iface.launch(debug=True)