File size: 11,116 Bytes
10b5661
 
4ec8ad4
230a814
10b5661
85d2f78
c8ee59e
e2524e7
00759b9
 
16d08c3
e2524e7
 
 
 
4ec8ad4
10b5661
 
e2524e7
 
 
10b5661
c8ee59e
 
4ec8ad4
85d2f78
e2524e7
 
 
 
 
 
 
 
00759b9
 
 
 
e2524e7
 
 
 
 
85d2f78
16d08c3
 
 
230a814
16d08c3
 
 
230a814
 
16d08c3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
00759b9
 
 
10b5661
 
00759b9
 
10b5661
00759b9
469aa82
5a74233
16d08c3
 
00759b9
85d2f78
00759b9
 
 
 
 
 
 
 
 
 
 
 
 
85d2f78
 
00759b9
 
 
 
 
 
 
 
 
 
 
 
 
5a74233
16d08c3
 
 
 
 
 
 
 
 
 
 
 
 
 
00759b9
16d08c3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
88efb3f
e2524e7
00759b9
10b5661
00759b9
16d08c3
 
88efb3f
2d89b4e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
64a9ffc
2d89b4e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4ec8ad4
417694d
e8dabed
417694d
f6a3081
 
e8dabed
f6a3081
 
 
 
 
 
 
 
 
 
 
796cbb5
e37b756
18f5cd8
796cbb5
 
e8dabed
796cbb5
 
18f5cd8
417694d
 
4ec8ad4
417694d
 
 
 
 
e8dabed
417694d
00759b9
417694d
 
 
 
e37b756
2d89b4e
e37b756
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2d89b4e
00759b9
e637753
00759b9
6d8af26
 
2d89b4e
 
00759b9
6d8af26
00759b9
2d89b4e
 
 
 
4ec8ad4
e8dabed
 
 
 
 
 
4ec8ad4
10b5661
e2524e7
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
import os
import base64
import gradio as gr
from PIL import Image, ImageOps
import io
import json
from groq import Groq
import logging
import cv2
import numpy as np
import traceback

# Set up logging
logging.basicConfig(level=logging.DEBUG)
logger = logging.getLogger(__name__)

# Load environment variables
GROQ_API_KEY = os.environ.get("GROQ_API_KEY")
if not GROQ_API_KEY:
    logger.error("GROQ_API_KEY is not set in environment variables")
    raise ValueError("GROQ_API_KEY is not set")

# Initialize Groq client
client = Groq(api_key=GROQ_API_KEY)

def encode_image(image):
    try:
        if isinstance(image, str):  # If image is a file path
            with open(image, "rb") as image_file:
                return base64.b64encode(image_file.read()).decode('utf-8')
        elif isinstance(image, Image.Image):  # If image is a PIL Image
            buffered = io.BytesIO()
            image.save(buffered, format="PNG")
            return base64.b64encode(buffered.getvalue()).decode('utf-8')
        elif isinstance(image, np.ndarray):  # If image is a numpy array (from video)
            is_success, buffer = cv2.imencode(".png", image)
            if is_success:
                return base64.b64encode(buffer).decode('utf-8')
        else:
            raise ValueError(f"Unsupported image type: {type(image)}")
    except Exception as e:
        logger.error(f"Error encoding image: {str(e)}")
        raise

def resize_image(image, max_size=(800, 800)):
    """Resize image to avoid exceeding the API size limits."""
    try:
        image.thumbnail(max_size, Image.Resampling.LANCZOS)  # Use LANCZOS resampling for better quality
        return image
    except Exception as e:
        logger.error(f"Error resizing image: {str(e)}")
        raise
        
def extract_frames_from_video(video, frame_points=[0, 0.5, 1], max_size=(800, 800)):
    """Extract key frames from the video at specific time points."""
    cap = cv2.VideoCapture(video)
    frame_count = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
    fps = int(cap.get(cv2.CAP_PROP_FPS))
    duration = frame_count / fps

    frames = []
    for time_point in frame_points:
        cap.set(cv2.CAP_PROP_POS_MSEC, time_point * duration * 1000)
        ret, frame = cap.read()
        if ret:
            resized_frame = cv2.resize(frame, max_size)
            frames.append(resized_frame)
    cap.release()
    return frames

def analyze_construction_image(images=None, video=None):
    if not images and video is None:
        logger.warning("No images or video provided")
        return [("No input", "Error: Please upload images or a video for analysis.")]

    try:
        logger.info("Starting analysis")
        results = []

        if images:
            for i, image_file in enumerate(images):
                image = Image.open(image_file.name)  # For image uploads, we use image_file.name
                resized_image = resize_image(image)  # Resize image before processing
                image_data_url = f"data:image/png;base64,{encode_image(resized_image)}"
                messages = [
                    {
                        "role": "user",
                        "content": [
                            {
                                "type": "text",
                                "text": f"Analyze this construction site image (Image {i+1}/{len(images)}). Identify any safety issues or hazards, categorize them, provide a detailed description, and suggest steps to resolve them."
                            },
                            {
                                "type": "image_url",
                                "image_url": {
                                    "url": image_data_url
                                }
                            }
                        ]
                    }
                ]
                completion = client.chat.completions.create(
                    model="llama-3.2-90b-vision-preview",
                    messages=messages,
                    temperature=0.7,
                    max_tokens=1000,
                    top_p=1,
                    stream=False,
                    stop=None
                )
                result = completion.choices[0].message.content
                results.append((f"Image {i+1} analysis", result))

        if video:
            frames = extract_frames_from_video(video)  # Use video directly, as it's a file path
            for i, frame in enumerate(frames):
                image_data_url = f"data:image/png;base64,{encode_image(frame)}"
                messages = [
                    {
                        "role": "user",
                        "content": [
                            {
                                "type": "text",
                                "text": f"Analyze this frame from a construction site video (Frame {i+1}/5). Identify any safety issues or hazards, categorize them, provide a detailed description, and suggest steps to resolve them."
                            },
                            {
                                "type": "image_url",
                                "image_url": {
                                    "url": image_data_url
                                }
                            }
                        ]
                    }
                ]
                completion = client.chat.completions.create(
                    model="llama-3.2-90b-vision-preview",
                    messages=messages,
                    temperature=0.7,
                    max_tokens=1000,
                    top_p=1,
                    stream=False,
                    stop=None
                )
                result = completion.choices[0].message.content
                results.append((f"Video frame {i+1} analysis", result))

        logger.info("Analysis completed successfully")
        return results
    except Exception as e:
        logger.error(f"Error during analysis: {str(e)}")
        logger.error(traceback.format_exc())  # Log the full traceback for debugging
        return [("Analysis error", f"Error during analysis: {str(e)}")]
        
def chat_about_image(message, chat_history):
    try:
        # Prepare the conversation history for the API
        messages = [
            {"role": "system", "content": "You are an AI assistant specialized in analyzing construction site images and answering questions about them. Use the information from the initial analysis to answer user queries."},
        ]
        
        # Add chat history to messages
        for human, ai in chat_history:
            if human:
                messages.append({"role": "user", "content": human})
            if ai:
                messages.append({"role": "assistant", "content": ai})
        
        # Add the new user message
        messages.append({"role": "user", "content": message})
        
        # Make API call
        completion = client.chat.completions.create(
            model="llama-3.2-90b-vision-preview",
            messages=messages,
            temperature=0.7,
            max_tokens=500,
            top_p=1,
            stream=False,
            stop=None
        )
        
        response = completion.choices[0].message.content
        chat_history.append((message, response))
        
        return "", chat_history
    except Exception as e:
        logger.error(f"Error during chat: {str(e)}")
        return "", chat_history + [(message, f"Error: {str(e)}")]


# Custom CSS for improved styling
custom_css = """
.container { max-width: 1200px; margin: auto; padding-top: 1.5rem; }
.header { text-align: center; margin-bottom: 1rem; }
.header h1 { color: #2c3e50; font-size: 2.5rem; }
.subheader { 
    color: #34495e; 
    font-size: 1rem; 
    line-height: 1.2; 
    margin-bottom: 1.5rem; 
    text-align: center; 
    padding: 0 15px;
    white-space: nowrap;
    overflow: hidden;
    text-overflow: ellipsis;
}
.image-container { border: 2px dashed #3498db; border-radius: 10px; padding: 1rem; text-align: center; margin-bottom: 1rem; }
.analyze-button { background-color: #2ecc71 !important; color: white !important; width: 100%; }
.clear-button { background-color: #e74c3c !important; color: white !important; width: 100px !important; }
.chatbot { border: 1px solid #bdc3c7; border-radius: 10px; padding: 1rem; height: 500px; overflow-y: auto; }
.chat-input { border: 1px solid #bdc3c7; border-radius: 5px; padding: 0.5rem; width: 100%; }
.groq-badge { position: fixed; bottom: 10px; right: 10px; background-color: #f39c12; color: white; padding: 5px 10px; border-radius: 5px; font-weight: bold; }
.chat-container { display: flex; flex-direction: column; height: 100%; }
.input-row { display: flex; align-items: center; margin-top: 10px; justify-content: space-between; }
.input-row > div:first-child { flex-grow: 1; margin-right: 10px; }
"""

# Create the Gradio interface
with gr.Blocks(css=custom_css, theme=gr.themes.Soft()) as iface:
    gr.HTML(
        """
        <div class="container">
            <div class="header">
                <h1>🏗️ Construction Site Safety Analyzer</h1>
            </div>
            <p class="subheader">Enhance workplace safety and compliance with AI-powered image and video analysis using Llama 3.2 90B Vision and expert chat assistance.</p>
        </div>
        """
    )
    
    # First row: Upload Image
    with gr.Row():
        image_input = gr.File(label="Upload Construction Site Images", file_count="multiple", type="filepath", elem_classes="image-container")

    # Second row: Upload Video
    with gr.Row():
        video_input = gr.Video(label="Upload Construction Site Video", elem_classes="image-container")
    
    # Third row: Analyze Safety Hazards Button
    with gr.Row():
        analyze_button = gr.Button("🔍 Analyze Safety Hazards", elem_classes="analyze-button")
    
    # Fourth row: Chat Interface (Safety Analysis Results)
    with gr.Row():
        chatbot = gr.Chatbot(label="Safety Analysis Results and Expert Chat", elem_classes="chatbot")
    
    # Fifth row: Question Bar
    with gr.Row():
        msg = gr.Textbox(
            label="Ask about safety measures or regulations",
            placeholder="E.g., 'What OSHA guidelines apply to this hazard?'",
            show_label=False,
            elem_classes="chat-input"
        )

    # Sixth row: Clear Chat Button
    with gr.Row():
        clear = gr.Button("🗑️ Clear", elem_classes="clear-button")

    def update_chat(history, new_messages):
        history = history or []
        history.extend(new_messages)
        return history

    analyze_button.click(
        analyze_construction_image,
        inputs=[image_input, video_input],
        outputs=[chatbot],
        postprocess=lambda x: update_chat(chatbot.value, x)
    )

    msg.submit(chat_about_image, [msg, chatbot], [msg, chatbot])
    clear.click(lambda: None, None, chatbot, queue=False)

    gr.HTML(
        """
        <div class="groq-badge">Powered by Groq</div>
        """
    )

# Launch the app
if __name__ == "__main__":
    iface.launch(debug=True)