File size: 7,661 Bytes
10b5661 4ec8ad4 10b5661 85d2f78 c8ee59e e2524e7 4ec8ad4 10b5661 e2524e7 10b5661 c8ee59e 4ec8ad4 85d2f78 e2524e7 85d2f78 2d89b4e 10b5661 e2524e7 64a9ffc 10b5661 e2524e7 85d2f78 10b5661 85d2f78 e2d89e8 85d2f78 c8ee59e 85d2f78 e2524e7 85d2f78 e2524e7 85d2f78 c8ee59e 85d2f78 c8ee59e 85d2f78 c8ee59e 10b5661 e2524e7 64a9ffc ef42063 e2d89e8 10b5661 e2524e7 2d89b4e e2d89e8 2d89b4e 64a9ffc 10b5661 e2524e7 64a9ffc 2d89b4e 64a9ffc 2d89b4e 4ec8ad4 417694d 74cd746 417694d 4ec8ad4 417694d 2d89b4e 417694d 2d89b4e 417694d 74cd746 2d89b4e 64a9ffc 2d89b4e 4ec8ad4 10b5661 e2524e7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 |
import os
import base64
import gradio as gr
from PIL import Image
import io
import json
from groq import Groq
import logging
# Set up logging
logging.basicConfig(level=logging.DEBUG)
logger = logging.getLogger(__name__)
# Load environment variables
GROQ_API_KEY = os.environ.get("GROQ_API_KEY")
if not GROQ_API_KEY:
logger.error("GROQ_API_KEY is not set in environment variables")
raise ValueError("GROQ_API_KEY is not set")
# Initialize Groq client
client = Groq(api_key=GROQ_API_KEY)
def encode_image(image):
try:
if isinstance(image, str): # If image is a file path
with open(image, "rb") as image_file:
return base64.b64encode(image_file.read()).decode('utf-8')
elif isinstance(image, Image.Image): # If image is a PIL Image
buffered = io.BytesIO()
image.save(buffered, format="PNG")
return base64.b64encode(buffered.getvalue()).decode('utf-8')
else:
raise ValueError(f"Unsupported image type: {type(image)}")
except Exception as e:
logger.error(f"Error encoding image: {str(e)}")
raise
def analyze_construction_image(image):
if image is None:
logger.warning("No image provided")
return [(None, "Error: No image uploaded")]
try:
logger.info("Starting image analysis")
image_data_url = f"data:image/png;base64,{encode_image(image)}"
messages = [
{
"role": "user",
"content": [
{
"type": "text",
"text": "Analyze this construction site image. Identify any issues or snags, categorize them, provide a detailed description, and suggest steps to resolve them. Format your response as a JSON object with keys 'snag_category', 'snag_description', and 'desnag_steps' (as an array)."
},
{
"type": "image_url",
"image_url": {
"url": image_data_url
}
}
]
}
]
logger.info("Sending request to Groq API")
completion = client.chat.completions.create(
model="llama-3.2-90b-vision-preview",
messages=messages,
temperature=0.7,
max_tokens=1000,
top_p=1,
stream=False,
response_format={"type": "json_object"},
stop=None
)
logger.info("Received response from Groq API")
result = completion.choices[0].message.content
logger.debug(f"Raw API response: {result}")
# Try to parse the result as JSON
try:
parsed_result = json.loads(result)
except json.JSONDecodeError:
logger.error("Failed to parse API response as JSON")
return [(None, "Error: Invalid response format")]
snag_category = str(parsed_result.get('snag_category', 'N/A'))
snag_description = str(parsed_result.get('snag_description', 'N/A'))
# Ensure desnag_steps is a list of strings
desnag_steps = parsed_result.get('desnag_steps', ['N/A'])
if not isinstance(desnag_steps, list):
desnag_steps = [str(desnag_steps)]
else:
desnag_steps = [str(step) for step in desnag_steps]
desnag_steps_str = '\n'.join(desnag_steps)
logger.info("Analysis completed successfully")
# Initialize chat history with analysis results
chat_history = [
(None, f"Image Analysis Results:\n\nSnag Category: {snag_category}\n\nSnag Description: {snag_description}\n\nSteps to Desnag:\n{desnag_steps_str}")
]
return chat_history
except Exception as e:
logger.error(f"Error during image analysis: {str(e)}")
return [(None, f"Error: {str(e)}")]
def chat_about_image(message, chat_history):
try:
# Prepare the conversation history for the API
messages = [
{"role": "system", "content": "You are an AI assistant specialized in analyzing construction site images and answering questions about them. Use the information from the initial analysis to answer user queries."},
]
# Add chat history to messages
for human, ai in chat_history:
if human:
messages.append({"role": "user", "content": human})
if ai:
messages.append({"role": "assistant", "content": ai})
# Add the new user message
messages.append({"role": "user", "content": message})
# Make API call
completion = client.chat.completions.create(
model="llama-3.2-90b-vision-preview",
messages=messages,
temperature=0.7,
max_tokens=500,
top_p=1,
stream=False,
stop=None
)
response = completion.choices[0].message.content
chat_history.append((message, response))
return "", chat_history
except Exception as e:
logger.error(f"Error during chat: {str(e)}")
return "", chat_history + [(message, f"Error: {str(e)}")]
custom_css = """
.container {
max-width: 1000px;
margin: auto;
padding-top: 1.5rem;
}
.header {
text-align: center;
margin-bottom: 2rem;
}
.header h1 {
color: #2c3e50;
font-size: 2.5rem;
}
.subheader {
color: #34495e;
font-size: 1.2rem;
margin-bottom: 2rem;
}
.image-container {
border: 2px dashed #3498db;
border-radius: 10px;
padding: 1rem;
text-align: center;
}
.analyze-button {
background-color: #2ecc71 !important;
color: white !important;
}
.clear-button {
background-color: #e74c3c !important;
color: white !important;
}
.chatbot {
border: 1px solid #bdc3c7;
border-radius: 10px;
padding: 1rem;
height: 400px;
overflow-y: auto;
}
.chat-input {
border: 1px solid #bdc3c7;
border-radius: 5px;
padding: 0.5rem;
}
"""
# Create the Gradio interface
with gr.Blocks(css=custom_css, theme=gr.themes.Soft()) as iface:
gr.HTML(
"""
<div class="container">
<div class="header">
<h1>🏗️ Construction Image Analyzer with AI Chat</h1>
</div>
<p class="subheader">Upload a construction site image, analyze it for issues, and chat with AI about the findings.</p>
</div>
"""
)
with gr.Row():
with gr.Column(scale=1):
image_input = gr.Image(type="pil", label="Upload Construction Image", elem_classes="image-container")
analyze_button = gr.Button("🔍 Analyze Image", elem_classes="analyze-button")
with gr.Column(scale=2):
chatbot = gr.Chatbot(label="Analysis Results and Chat", elem_classes="chatbot")
with gr.Row():
msg = gr.Textbox(
label="Ask a question about the image",
placeholder="Type your question here and press Enter...",
show_label=False,
elem_classes="chat-input"
)
clear = gr.Button("🗑️ Clear Chat", elem_classes="clear-button")
analyze_button.click(
analyze_construction_image,
inputs=[image_input],
outputs=[chatbot]
)
msg.submit(chat_about_image, [msg, chatbot], [msg, chatbot])
clear.click(lambda: None, None, chatbot, queue=False)
# Launch the app
if __name__ == "__main__":
iface.launch(debug=True) |