Spaces:
Running
Running
File size: 9,316 Bytes
71de0bf 02b315e 71de0bf 02b315e 71de0bf 02b315e 71de0bf 02b315e 8ce6be4 02b315e 8ce6be4 71de0bf 02b315e 71de0bf 8ce6be4 71de0bf 02b315e 71de0bf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 |
import os
import base64
import gradio as gr
from typing import List, Tuple, Optional, Dict, Any
from enum import Enum
from datetime import datetime
import httpx
from dataclasses import dataclass
from anthropic import Anthropic
import json
# Get API key from environment variable
ANTHROPIC_API_KEY = os.getenv('ANTHROPIC_API_KEY')
if not ANTHROPIC_API_KEY:
raise ValueError("ANTHROPIC_API_KEY environment variable must be set")
# Initialize Anthropic client
anthropic = Anthropic(api_key=ANTHROPIC_API_KEY)
@dataclass
class ToolResult:
output: Optional[str] = None
error: Optional[str] = None
base64_image: Optional[str] = None
def to_dict(self) -> Dict[str, Any]:
return {
"type": "tool_result",
"output": self.output,
"error": self.error,
"base64_image": self.base64_image
}
# Define the computer use tools
COMPUTER_USE_TOOLS = [
{
"type": "computer_20241022",
"name": "computer",
"display_width_px": 1024,
"display_height_px": 768,
"display_number": 1,
},
{
"type": "text_editor_20241022",
"name": "str_replace_editor"
},
{
"type": "bash_20241022",
"name": "bash"
}
]
class ComputerUseDemo:
def __init__(self):
self.messages: List[Dict[str, Any]] = []
self.model = "claude-3-5-sonnet-20241022"
self.max_tokens = 4096
def validate_auth(self) -> Optional[str]:
if not ANTHROPIC_API_KEY:
return "ANTHROPIC_API_KEY environment variable is not set."
return None
def format_messages(self, chat_history: List[Tuple[str, str]]) -> List[Dict[str, Any]]:
"""Convert chat history to Anthropic message format"""
formatted_messages = []
for user_msg, assistant_msg in chat_history:
formatted_messages.append({"role": "user", "content": user_msg})
if assistant_msg:
formatted_messages.append({"role": "assistant", "content": assistant_msg})
return formatted_messages
def execute_tool(self, tool_name: str, tool_input: str) -> ToolResult:
"""Execute the requested tool and return results"""
try:
if tool_name == "computer":
return ToolResult(
output=f"Executed computer command: {tool_input}",
base64_image=None
)
elif tool_name == "str_replace_editor":
return ToolResult(
output=f"Created/modified file with content: {tool_input}"
)
elif tool_name == "bash":
return ToolResult(
output=f"Executed bash command: {tool_input}"
)
else:
return ToolResult(
error=f"Unknown tool: {tool_name}"
)
except Exception as e:
return ToolResult(error=str(e))
def process_message(
self,
message: str,
chat_history: List[Tuple[str, str]],
system_prompt: str
) -> Tuple[List[Tuple[str, str]], Optional[str]]:
"""Process a message with proper error handling"""
if error := self.validate_auth():
return chat_history, error
try:
# Format messages for Claude
messages = self.format_messages(chat_history)
messages.append({"role": "user", "content": message})
# Create system prompt for computer use
base_system_prompt = """You have access to a computing environment through specialized tools.
Use the computer tool to interact with the GUI, the text editor for file operations,
and bash for command-line tasks. After each action, explicitly describe what you did and what happened.
Always show the results of your actions."""
full_system_prompt = f"{base_system_prompt}\n{system_prompt}" if system_prompt else base_system_prompt
conversation_log = []
conversation_log.append((message, "")) # Add user message
while True:
# Call Claude API with computer use enabled
response = anthropic.beta.messages.create(
model=self.model,
max_tokens=self.max_tokens,
messages=messages,
system=full_system_prompt,
tools=COMPUTER_USE_TOOLS,
betas=["computer-use-2024-10-22"]
)
# Get the assistant's response text
assistant_message = response.content[0].text if response.content else ""
# Check for tool calls in the response
tool_calls = []
for content in response.content:
if hasattr(content, 'tool_calls') and content.tool_calls:
tool_calls.extend(content.tool_calls)
# Add assistant's initial response to conversation
if assistant_message:
conversation_log.append(("", assistant_message))
# Handle tool calls if present
if tool_calls:
tool_call = tool_calls[0] # Handle first tool call
tool_result = self.execute_tool(tool_call.name, tool_call.parameters)
# Add tool execution to conversation
if tool_result.error:
conversation_log.append(("", f"Error: {tool_result.error}"))
else:
conversation_log.append(("", f"Tool execution: {tool_result.output}"))
# Add tool interactions to message history
messages.append({
"role": "assistant",
"content": [{"type": "tool_use", "name": tool_call.name, "input": tool_call.parameters}]
})
messages.append({
"role": "user",
"content": [tool_result.to_dict()]
})
else:
break
return conversation_log, None
except Exception as e:
return chat_history, f"Error processing message: {str(e)}"
def create_demo() -> gr.Interface:
demo = ComputerUseDemo()
with gr.Blocks(title="Claude Computer Use Demo") as interface:
gr.Markdown("# Claude Computer Use Demo")
gr.Markdown("""## Security Notice
⚠️ This demo runs in a sandboxed environment. Never provide access to sensitive
information or credentials, as Claude's behavior could be influenced by malicious content.""")
with gr.Row():
with gr.Column(scale=4):
chatbot = gr.Chatbot(
label="Chat History",
height=600,
container=True
)
with gr.Row():
msg = gr.Textbox(
label="Message",
placeholder="Type your instructions for Claude...",
lines=3,
scale=8
)
with gr.Column(scale=1):
submit = gr.Button("Send", variant="primary")
clear = gr.Button("Reset")
with gr.Column(scale=1):
system_prompt = gr.Textbox(
label="System Instructions",
lines=3,
placeholder="Add custom instructions for Claude..."
)
with gr.Accordion("Advanced Settings", open=False):
model = gr.Textbox(
label="Model",
value=demo.model,
interactive=False
)
max_tokens = gr.Slider(
label="Max Tokens",
minimum=1024,
maximum=8192,
value=demo.max_tokens,
step=1024
)
def on_message(
message: str,
chat_history: List[Tuple[str, str]],
system_prompt: str
) -> Tuple[List[Tuple[str, str]], str]:
if not message.strip():
return chat_history, ""
new_history, error = demo.process_message(message, chat_history or [], system_prompt)
if error:
gr.Warning(error)
return new_history, ""
# Set up event handlers
msg.submit(
on_message,
inputs=[msg, chatbot, system_prompt],
outputs=[chatbot, msg]
)
submit.click(
on_message,
inputs=[msg, chatbot, system_prompt],
outputs=[chatbot, msg]
)
clear.click(
lambda: ([], ""),
outputs=[chatbot, msg]
)
return interface
# Create and launch the demo
demo = create_demo()
if __name__ == "__main__":
demo.launch(server_name="0.0.0.0", server_port=7860) |