AeroXi's picture
Upload folder using huggingface_hub
ece766c
# ------------------------------------------------------------------------------------
# Karlo-v1.0.alpha
# Copyright (c) 2022 KakaoBrain. All Rights Reserved.
# ------------------------------------------------------------------------------------
import copy
import torch
from ldm.modules.karlo.kakao.modules import create_gaussian_diffusion
from ldm.modules.karlo.kakao.modules.unet import PLMImUNet
class Text2ImProgressiveModel(torch.nn.Module):
"""
A decoder that generates 64x64px images based on the text prompt.
:param config: yaml config to define the decoder.
:param tokenizer: tokenizer used in clip.
"""
def __init__(
self,
config,
tokenizer,
):
super().__init__()
self._conf = config
self._model_conf = config.model.hparams
self._diffusion_kwargs = dict(
steps=config.diffusion.steps,
learn_sigma=config.diffusion.learn_sigma,
sigma_small=config.diffusion.sigma_small,
noise_schedule=config.diffusion.noise_schedule,
use_kl=config.diffusion.use_kl,
predict_xstart=config.diffusion.predict_xstart,
rescale_learned_sigmas=config.diffusion.rescale_learned_sigmas,
timestep_respacing=config.diffusion.timestep_respacing,
)
self._tokenizer = tokenizer
self.model = self.create_plm_dec_model()
cf_token, cf_mask = self.set_cf_text_tensor()
self.register_buffer("cf_token", cf_token, persistent=False)
self.register_buffer("cf_mask", cf_mask, persistent=False)
@classmethod
def load_from_checkpoint(cls, config, tokenizer, ckpt_path, strict: bool = True):
ckpt = torch.load(ckpt_path, map_location="cpu")["state_dict"]
model = cls(config, tokenizer)
model.load_state_dict(ckpt, strict=strict)
return model
def create_plm_dec_model(self):
image_size = self._model_conf.image_size
if self._model_conf.channel_mult == "":
if image_size == 256:
channel_mult = (1, 1, 2, 2, 4, 4)
elif image_size == 128:
channel_mult = (1, 1, 2, 3, 4)
elif image_size == 64:
channel_mult = (1, 2, 3, 4)
else:
raise ValueError(f"unsupported image size: {image_size}")
else:
channel_mult = tuple(
int(ch_mult) for ch_mult in self._model_conf.channel_mult.split(",")
)
assert 2 ** (len(channel_mult) + 2) == image_size
attention_ds = []
for res in self._model_conf.attention_resolutions.split(","):
attention_ds.append(image_size // int(res))
return PLMImUNet(
text_ctx=self._model_conf.text_ctx,
xf_width=self._model_conf.xf_width,
in_channels=3,
model_channels=self._model_conf.num_channels,
out_channels=6 if self._model_conf.learn_sigma else 3,
num_res_blocks=self._model_conf.num_res_blocks,
attention_resolutions=tuple(attention_ds),
dropout=self._model_conf.dropout,
channel_mult=channel_mult,
num_heads=self._model_conf.num_heads,
num_head_channels=self._model_conf.num_head_channels,
num_heads_upsample=self._model_conf.num_heads_upsample,
use_scale_shift_norm=self._model_conf.use_scale_shift_norm,
resblock_updown=self._model_conf.resblock_updown,
clip_dim=self._model_conf.clip_dim,
clip_emb_mult=self._model_conf.clip_emb_mult,
clip_emb_type=self._model_conf.clip_emb_type,
clip_emb_drop=self._model_conf.clip_emb_drop,
)
def set_cf_text_tensor(self):
return self._tokenizer.padded_tokens_and_mask([""], self.model.text_ctx)
def get_sample_fn(self, timestep_respacing):
use_ddim = timestep_respacing.startswith(("ddim", "fast"))
diffusion_kwargs = copy.deepcopy(self._diffusion_kwargs)
diffusion_kwargs.update(timestep_respacing=timestep_respacing)
diffusion = create_gaussian_diffusion(**diffusion_kwargs)
sample_fn = (
diffusion.ddim_sample_loop_progressive
if use_ddim
else diffusion.p_sample_loop_progressive
)
return sample_fn
def forward(
self,
txt_feat,
txt_feat_seq,
tok,
mask,
img_feat=None,
cf_guidance_scales=None,
timestep_respacing=None,
):
# cfg should be enabled in inference
assert cf_guidance_scales is not None and all(cf_guidance_scales > 0.0)
assert img_feat is not None
bsz = txt_feat.shape[0]
img_sz = self._model_conf.image_size
def guided_model_fn(x_t, ts, **kwargs):
half = x_t[: len(x_t) // 2]
combined = torch.cat([half, half], dim=0)
model_out = self.model(combined, ts, **kwargs)
eps, rest = model_out[:, :3], model_out[:, 3:]
cond_eps, uncond_eps = torch.split(eps, len(eps) // 2, dim=0)
half_eps = uncond_eps + cf_guidance_scales.view(-1, 1, 1, 1) * (
cond_eps - uncond_eps
)
eps = torch.cat([half_eps, half_eps], dim=0)
return torch.cat([eps, rest], dim=1)
cf_feat = self.model.cf_param.unsqueeze(0)
cf_feat = cf_feat.expand(bsz // 2, -1)
feat = torch.cat([img_feat, cf_feat.to(txt_feat.device)], dim=0)
cond = {
"y": feat,
"txt_feat": txt_feat,
"txt_feat_seq": txt_feat_seq,
"mask": mask,
}
sample_fn = self.get_sample_fn(timestep_respacing)
sample_outputs = sample_fn(
guided_model_fn,
(bsz, 3, img_sz, img_sz),
noise=None,
device=txt_feat.device,
clip_denoised=True,
model_kwargs=cond,
)
for out in sample_outputs:
sample = out["sample"]
yield sample if cf_guidance_scales is None else sample[
: sample.shape[0] // 2
]
class Text2ImModel(Text2ImProgressiveModel):
def forward(
self,
txt_feat,
txt_feat_seq,
tok,
mask,
img_feat=None,
cf_guidance_scales=None,
timestep_respacing=None,
):
last_out = None
for out in super().forward(
txt_feat,
txt_feat_seq,
tok,
mask,
img_feat,
cf_guidance_scales,
timestep_respacing,
):
last_out = out
return last_out