File size: 4,288 Bytes
ece766c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
# ------------------------------------------------------------------------------------
# Karlo-v1.0.alpha
# Copyright (c) 2022 KakaoBrain. All Rights Reserved.
# ------------------------------------------------------------------------------------

import os
import logging
import torch

from omegaconf import OmegaConf

from ldm.modules.karlo.kakao.models.clip import CustomizedCLIP, CustomizedTokenizer
from ldm.modules.karlo.kakao.models.prior_model import PriorDiffusionModel
from ldm.modules.karlo.kakao.models.decoder_model import Text2ImProgressiveModel
from ldm.modules.karlo.kakao.models.sr_64_256 import ImprovedSupRes64to256ProgressiveModel


SAMPLING_CONF = {
    "default": {
        "prior_sm": "25",
        "prior_n_samples": 1,
        "prior_cf_scale": 4.0,
        "decoder_sm": "50",
        "decoder_cf_scale": 8.0,
        "sr_sm": "7",
    },
    "fast": {
        "prior_sm": "25",
        "prior_n_samples": 1,
        "prior_cf_scale": 4.0,
        "decoder_sm": "25",
        "decoder_cf_scale": 8.0,
        "sr_sm": "7",
    },
}

CKPT_PATH = {
    "prior": "prior-ckpt-step=01000000-of-01000000.ckpt",
    "decoder": "decoder-ckpt-step=01000000-of-01000000.ckpt",
    "sr_256": "improved-sr-ckpt-step=1.2M.ckpt",
}


class BaseSampler:
    _PRIOR_CLASS = PriorDiffusionModel
    _DECODER_CLASS = Text2ImProgressiveModel
    _SR256_CLASS = ImprovedSupRes64to256ProgressiveModel

    def __init__(
        self,
        root_dir: str,
        sampling_type: str = "fast",
    ):
        self._root_dir = root_dir

        sampling_type = SAMPLING_CONF[sampling_type]
        self._prior_sm = sampling_type["prior_sm"]
        self._prior_n_samples = sampling_type["prior_n_samples"]
        self._prior_cf_scale = sampling_type["prior_cf_scale"]

        assert self._prior_n_samples == 1

        self._decoder_sm = sampling_type["decoder_sm"]
        self._decoder_cf_scale = sampling_type["decoder_cf_scale"]

        self._sr_sm = sampling_type["sr_sm"]

    def __repr__(self):
        line = ""
        line += f"Prior, sampling method: {self._prior_sm}, cf_scale: {self._prior_cf_scale}\n"
        line += f"Decoder, sampling method: {self._decoder_sm}, cf_scale: {self._decoder_cf_scale}\n"
        line += f"SR(64->256), sampling method: {self._sr_sm}"

        return line

    def load_clip(self, clip_path: str):
        clip = CustomizedCLIP.load_from_checkpoint(
            os.path.join(self._root_dir, clip_path)
        )
        clip = torch.jit.script(clip)
        clip.cuda()
        clip.eval()

        self._clip = clip
        self._tokenizer = CustomizedTokenizer()

    def load_prior(
        self,
        ckpt_path: str,
        clip_stat_path: str,
        prior_config: str = "configs/prior_1B_vit_l.yaml"
    ):
        logging.info(f"Loading prior: {ckpt_path}")

        config = OmegaConf.load(prior_config)
        clip_mean, clip_std = torch.load(
            os.path.join(self._root_dir, clip_stat_path), map_location="cpu"
        )

        prior = self._PRIOR_CLASS.load_from_checkpoint(
            config,
            self._tokenizer,
            clip_mean,
            clip_std,
            os.path.join(self._root_dir, ckpt_path),
            strict=True,
        )
        prior.cuda()
        prior.eval()
        logging.info("done.")

        self._prior = prior

    def load_decoder(self, ckpt_path: str, decoder_config: str = "configs/decoder_900M_vit_l.yaml"):
        logging.info(f"Loading decoder: {ckpt_path}")

        config = OmegaConf.load(decoder_config)
        decoder = self._DECODER_CLASS.load_from_checkpoint(
            config,
            self._tokenizer,
            os.path.join(self._root_dir, ckpt_path),
            strict=True,
        )
        decoder.cuda()
        decoder.eval()
        logging.info("done.")

        self._decoder = decoder

    def load_sr_64_256(self, ckpt_path: str, sr_config: str = "configs/improved_sr_64_256_1.4B.yaml"):
        logging.info(f"Loading SR(64->256): {ckpt_path}")

        config = OmegaConf.load(sr_config)
        sr = self._SR256_CLASS.load_from_checkpoint(
            config, os.path.join(self._root_dir, ckpt_path), strict=True
        )
        sr.cuda()
        sr.eval()
        logging.info("done.")

        self._sr_64_256 = sr