Spaces:
Running
Running
File size: 12,758 Bytes
b8f6b7f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 |
from __future__ import annotations
import logging
import os
import re
import shutil
from pathlib import Path
from typing import Optional
import cv2
import yt_dlp
from llama_index.core.agent.workflow import FunctionAgent
from llama_index.core.base.llms.types import TextBlock, ImageBlock, ChatMessage
from llama_index.core.tools import FunctionTool
from llama_index.llms.google_genai import GoogleGenAI
from tqdm import tqdm
from youtube_transcript_api import YouTubeTranscriptApi, TranscriptsDisabled, NoTranscriptFound
# ---------------------------------------------------------------------------
# Environment setup & logging
# ---------------------------------------------------------------------------
logger = logging.getLogger(__name__)
# ---------------------------------------------------------------------------
# Prompt loader
# ---------------------------------------------------------------------------
def load_prompt_from_file(filename: str = "../prompts/video_analyzer_prompt.txt") -> str:
"""Load the system prompt for video analysis from *filename*.
Falls back to a minimal prompt if the file cannot be read.
"""
script_dir = Path(__file__).parent
prompt_path = (script_dir / filename).resolve()
try:
with prompt_path.open("r", encoding="utf-8") as fp:
prompt = fp.read()
logger.info("Successfully loaded system prompt from %s", prompt_path)
return prompt
except FileNotFoundError:
logger.error(
"Prompt file %s not found. Using fallback prompt.", prompt_path
)
except Exception as exc: # pylint: disable=broad-except
logger.error(
"Error loading prompt file %s: %s", prompt_path, exc, exc_info=True
)
# Fallback – keep it extremely short to save tokens
return (
"You are a video analyzer. Provide a factual, chronological "
"description of the video, identify key events, and summarise insights."
)
def extract_frames(video_path, output_dir, fps=1/2):
"""
Extract frames from video at specified FPS
Returns a list of (frame_path, timestamp) tuples
"""
os.makedirs(output_dir, exist_ok=True)
# Open video
cap = cv2.VideoCapture(video_path)
if not cap.isOpened():
print(f"Error: Could not open video {video_path}")
return [], None
# Get video properties
video_fps = cap.get(cv2.CAP_PROP_FPS)
frame_count = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
duration = frame_count / video_fps
# Calculate frame interval
interval = int(video_fps / fps)
if interval < 1:
interval = 1
# Extract frames
frames = []
frame_idx = 0
with tqdm(total=frame_count, desc="Extracting frames") as pbar:
while cap.isOpened():
ret, frame = cap.read()
if not ret:
break
if frame_idx % interval == 0:
timestamp = frame_idx / video_fps
frame_path = os.path.join(output_dir, f"frame_{frame_idx:06d}.jpg")
cv2.imwrite(frame_path, frame)
frames.append((frame_path, timestamp))
frame_idx += 1
pbar.update(1)
cap.release()
return frames, duration
def download_video_and_analyze(video_url: str) -> str:
"""Download a video from *video_url* and return the local file path."""
llm_model_name = os.getenv("VIDEO_ANALYZER_LLM_MODEL", "models/gemini-1.5-pro")
gemini_api_key = os.getenv("GEMINI_API_KEY")
ydl_opts = {
'format': 'best',
'outtmpl': os.path.join("downloaded_videos", 'temp_video.%(ext)s'),
}
with yt_dlp.YoutubeDL(ydl_opts) as ydl_download:
ydl_download.download(video_url)
print(f"Processing video: {video_url}")
# Create temporary directory for frames
temp_dir = "frame_downloaded_videos"
os.makedirs(temp_dir, exist_ok=True)
# Extract frames
frames, duration = extract_frames(os.path.join("downloaded_videos", 'temp_video.mp4'), temp_dir)
if not frames:
logging.info(f"No frames extracted from {video_url}")
return f"No frames extracted from {video_url}"
blocks = []
text_block = TextBlock(text=load_prompt_from_file())
blocks.append(text_block)
for frame_path, timestamp in tqdm(frames, desc="Collecting frames"):
blocks.append(ImageBlock(path=frame_path))
llm = GoogleGenAI(api_key=gemini_api_key, model=llm_model_name)
logger.info("Using LLM model: %s", llm_model_name)
response = llm.chat([ChatMessage(role="user", blocks=blocks)])
# Clean up temporary files
shutil.rmtree(temp_dir)
os.remove(os.path.join("downloaded_videos", 'temp_video.mp4'))
return response.message.content
# --- Helper function to extract YouTube Video ID ---
def extract_video_id(url: str) -> Optional[str]:
"""Extracts the YouTube video ID from various URL formats."""
# Standard watch URL: https://www.youtube.com/watch?v=VIDEO_ID
pattern = re.compile(
r'^(?:https?://)?' # protocole optionnel
r'(?:www\.)?' # sous-domaine optionnel
r'youtube\.com/watch\?' # domaine et chemin fixe
r'(?:.*&)?' # éventuellement d'autres paramètres avant v=
r'v=([^&]+)' # capture de l'ID (tout jusqu'au prochain & ou fin)
)
match = pattern.search(url)
if match:
video_id = match.group(1)
return video_id # affiche "VIDEO_ID"
else:
print("Aucun ID trouvé")
return None
# --- YouTube Transcript Tool ---
def get_youtube_transcript(video_url_or_id: str, languages: str | None = None) -> str:
"""Fetches the transcript for a YouTube video using its URL or video ID.
Specify preferred languages as a list (e.g., ["en", "es"]).
Returns the transcript text or an error message.
"""
if languages is None:
languages = ["en"]
logger.info(f"Attempting to fetch YouTube transcript for: {video_url_or_id}")
video_id = extract_video_id(video_url_or_id)
if video_id is None or not video_id:
logger.error(f"Could not extract video ID from: {video_url_or_id}")
return f"Error: Invalid YouTube URL or Video ID format: {video_url_or_id}"
try:
# Fetch available transcripts
api = YouTubeTranscriptApi()
transcript_list = api.list(video_id)
# Try to find a transcript in the specified languages
transcript = transcript_list.find_transcript(languages)
# Fetch the actual transcript data (list of dicts)
transcript_data = transcript.fetch()
# Combine the text parts into a single string
full_transcript = " ".join(snippet.text for snippet in transcript_data)
full_transcript = " ".join(snippet.text for snippet in transcript_data)
logger.info(f"Successfully fetched transcript for video ID {video_id} in language {transcript.language}.")
return full_transcript
except TranscriptsDisabled:
logger.warning(f"Transcripts are disabled for video ID: {video_id}")
return f"Error: Transcripts are disabled for this video (ID: {video_id})."
except NoTranscriptFound as e:
logger.warning(
f"No transcript found for video ID {video_id} in languages {languages}. Available: {e.available_transcripts}")
# Try fetching any available transcript if specific languages failed
try:
logger.info(f"Attempting to fetch any available transcript for {video_id}")
any_transcript = transcript_list.find_generated_transcript(
transcript_list.manually_created_transcripts.keys() or transcript_list.generated_transcripts.keys())
any_transcript_data = any_transcript.fetch()
full_transcript = " ".join([item["text"] for item in any_transcript_data])
logger.info(
f"Successfully fetched fallback transcript for video ID {video_id} in language {any_transcript.language}.")
return full_transcript
except Exception as fallback_e:
logger.error(
f"Could not find any transcript for video ID {video_id}. Original error: {e}. Fallback error: {fallback_e}")
return f"Error: No transcript found for video ID {video_id} in languages {languages} or any fallback language."
except Exception as e:
logger.error(f"Unexpected error fetching transcript for video ID {video_id}: {e}", exc_info=True)
return f"Error fetching transcript: {e}"
download_video_and_analyze_tool = FunctionTool.from_defaults(
name="download_video_and_analyze",
description=(
"Downloads a video (YouTube or direct URL), samples representative frames, "
"and feeds them to Gemini for multimodal analysis—returning a rich textual summary "
"of the visual content."
),
fn=download_video_and_analyze,
)
youtube_transcript_tool = FunctionTool.from_defaults(
fn=get_youtube_transcript,
name="get_youtube_transcript",
description=(
"(YouTube) Fetches the transcript text for a given YouTube video URL or video ID. "
"Specify preferred languages (e.g., 'en', 'es'). Returns transcript or error."
)
)
# ---------------------------------------------------------------------------
# Agent factory
# ---------------------------------------------------------------------------
def initialize_video_analyzer_agent() -> FunctionAgent:
"""Initialise and return a *video_analyzer_agent* `FunctionAgent`."""
logger.info("Initialising VideoAnalyzerAgent …")
llm_model_name = os.getenv("VIDEO_ANALYZER_LLM_MODEL", "models/gemini-1.5-pro")
gemini_api_key = os.getenv("GEMINI_API_KEY")
if not gemini_api_key:
logger.error("GEMINI_API_KEY not found in environment variables.")
raise ValueError("GEMINI_API_KEY must be set")
try:
llm = GoogleGenAI(api_key=gemini_api_key, model=llm_model_name)
logger.info("Using LLM model: %s", llm_model_name)
system_prompt = load_prompt_from_file()
tools = [download_video_and_analyze_tool, youtube_transcript_tool]
agent = FunctionAgent(
name="video_analyzer_agent",
description=(
"VideoAnalyzerAgent inspects video files using Gemini's multimodal "
"video understanding capabilities, producing factual scene analysis, "
"temporal segmentation, and concise summaries as guided by the system "
"prompt."
),
llm=llm,
system_prompt=system_prompt,
tools=tools,
can_handoff_to=[
"planner_agent",
"research_agent",
"reasoning_agent",
"code_agent",
],
)
logger.info("VideoAnalyzerAgent initialised successfully.")
return agent
except Exception as exc: # pylint: disable=broad-except
logger.error("Error during VideoAnalyzerAgent initialisation: %s", exc, exc_info=True)
raise
if __name__ == "__main__":
logging.basicConfig(
level=logging.INFO,
format="%(asctime)s - %(name)s - %(levelname)s - %(message)s",
)
logger.info("Running video_analyzer_agent.py directly for testing …")
if not os.getenv("GEMINI_API_KEY"):
print("Error: GEMINI_API_KEY environment variable not set. Cannot run test.")
else:
try:
test_agent = initialize_video_analyzer_agent()
summary = download_video_and_analyze("https://www.youtube.com/watch?v=dQw4w9WgXcQ")
print("\n--- Gemini summary ---\n")
print(summary)
print("Video Analyzer Agent initialised successfully for testing.")
except Exception as exc:
print(f"Error during testing: {exc}")
test_agent = None
try:
# Test YouTube transcript tool directly
if YOUTUBE_TRANSCRIPT_API_AVAILABLE:
print("\nTesting YouTube transcript tool...")
# Example video: "Attention is All You Need" paper explanation
yt_url = "https://www.youtube.com/watch?v=TQQlZhbC5ps"
transcript = get_youtube_transcript(yt_url)
if not transcript.startswith("Error:"):
print(f"Transcript fetched (first 500 chars):\n{transcript[:500]}...")
else:
print(f"YouTube Transcript Fetch Failed: {transcript}")
else:
print("\nSkipping YouTube transcript test as youtube-transcript-api is not available.")
except Exception as e:
print(f"Error during testing: {e}")
|