import warnings warnings.simplefilter("ignore", category=FutureWarning) import os import streamlit as st from neo4j import GraphDatabase from huggingface_hub import InferenceClient from langchain_community.vectorstores import Neo4jVector from transformers import AutoTokenizer, AutoModel import torch # Hugging Face API Setup API_TOKEN = os.environ.get("HUGGINGFACE_API_TOKEN") MISTRAL_MODEL_NAME = "mistralai/Mistral-7B-Instruct-v0.3" client = InferenceClient(api_key=API_TOKEN, ) # Driver neo4j driver = GraphDatabase.driver( os.environ['NEO4J_URI'], auth=(os.environ['NEO4J_USERNAME'], os.environ['NEO4J_PASSWORD']) ) # Custom Embedding Class class CustomHuggingFaceEmbeddings: def __init__(self, model_name="sentence-transformers/all-MiniLM-L6-v2"): self.tokenizer = AutoTokenizer.from_pretrained(model_name) self.model = AutoModel.from_pretrained(model_name) def embed_text(self, text): try: inputs = self.tokenizer(text, return_tensors="pt", padding=True, truncation=True) except Exception as e: print(f"Error during tokenization: {e}") return [] with torch.no_grad(): outputs = self.model(**inputs) return outputs.last_hidden_state.mean(dim=1).squeeze().tolist() def embed_query(self, text): return self.embed_text(text) def embed_documents(self, text): return self.embed_text(text) # Function to set up the Neo4j Vector Index @st.cache_resource def setup_vector_index(): return Neo4jVector.from_existing_graph( CustomHuggingFaceEmbeddings(), url=os.environ['NEO4J_URI'], username=os.environ['NEO4J_USERNAME'], password=os.environ['NEO4J_PASSWORD'], index_name='articles', node_label="Article", text_node_properties=['name', 'abstract'], embedding_node_property='embedding', ) # Query Mistral def query_from_mistral(context: str, user_input: str): messages = [ {"role": "system", "content": f"Use the following context to answer the query:\n{context}"}, {"role": "user", "content": user_input}, ] completion = client.chat.completions.create( model=MISTRAL_MODEL_NAME, messages=messages, max_tokens=500, ) return completion.choices[0].message["content"] # Find keywords def query_article_keywords(name): with driver.session() as session: query = """ MATCH (a:Article)-[:CONTAIN]->(k:Keyword) WHERE a.name = $name RETURN k """ result = session.run(query, name=name) return [record["k"] for record in result] # extract data from retriever response def extract_data(documents): result = [] for doc in documents: publication_date = doc.metadata.get('date_publication', "N/A") page_content = doc.page_content.strip().split("\n") title = "N/A" abstract = "N/A" for line in page_content: if line.lower().startswith("name:"): title = line[len("name:"):].strip() elif line.lower().startswith("abstract:"): abstract = line[len("abstract:"):].strip() keywords = query_article_keywords(title) keywords = [dict(node)['text'] for node in keywords] doc_data = { "Publication Date": publication_date, "Title": title, "Abstract": abstract, "keywords": ','.join(keywords) } result.append(doc_data) return result # Main Streamlit Application def main(): st.set_page_config(page_title="Vector Chat with Mistral", layout="centered") # App description and features st.title("🤖 RAG with Mistral") st.markdown(""" ## Description: Chat with **Mistral-7B-Instruct** using context retrieved from a **Neo4j** vector index. This app allows you to ask questions, and the assistant will provide real-time, context-driven answers by querying relevant articles and their keywords from the database. """) st.image(image="image.jpg", caption="Neo4j") st.markdown(""" ## Key Features: - **Real-time context search** from a Neo4j vector index. - **Integration with Mistral-7B-Instruct model** for natural language processing. - **Keyword extraction** from relevant articles for enhanced context-based responses. ## GitHub Repository: You can find the source code and more information about this app on GitHub: [GitHub Repository Link](https://github.com/VeerapatSintupong123/RAG-Mistral) """) # Initialize the vector index vector_index = setup_vector_index() if "messages" not in st.session_state: st.session_state.messages = [] with st.form(key="chat_form", clear_on_submit=True): user_input = st.text_input("You:", "") submit = st.form_submit_button("Send") if submit and user_input: st.session_state.messages.append({"role": "user", "content": user_input}) with st.spinner("Fetching response..."): try: context_results = vector_index.similarity_search(user_input, k=5) if not context_results: st.warning("No relevant context found. Please refine your query.") response = "I'm sorry, I couldn't find any relevant information to answer your question." else: data_dict = extract_data(context_results) # convert to string context = '\n'.join([ f"Title: {doc['Title']}\n" f"Abstract: {doc['Abstract']}\n" f"Publication Date: {doc['Publication Date']}\n" f"Keywords: {doc['keywords']}" for doc in data_dict ]) response = query_from_mistral(context.strip(), user_input) st.session_state.messages.append({"role": "bot", "content": response}) except Exception as e: st.error(f"Error: {e}") # Display chat history for message in st.session_state.messages: if message["role"] == "user": st.markdown(f"**You:** {message['content']}") elif message["role"] == "bot": st.markdown(f"**Bot:** {message['content']}") if __name__ == "__main__": main()