Adventure123's picture
Update app.py
a92b40d verified
import warnings
warnings.simplefilter("ignore", category=FutureWarning)
import os
import streamlit as st
from neo4j import GraphDatabase
from huggingface_hub import InferenceClient
from langchain_community.vectorstores import Neo4jVector
from transformers import AutoTokenizer, AutoModel
import torch
# Hugging Face API Setup
API_TOKEN = os.environ.get("HUGGINGFACE_API_TOKEN")
MISTRAL_MODEL_NAME = "mistralai/Mistral-7B-Instruct-v0.3"
client = InferenceClient(api_key=API_TOKEN, )
# Driver neo4j
driver = GraphDatabase.driver(
os.environ['NEO4J_URI'],
auth=(os.environ['NEO4J_USERNAME'], os.environ['NEO4J_PASSWORD'])
)
# Custom Embedding Class
class CustomHuggingFaceEmbeddings:
def __init__(self, model_name="sentence-transformers/all-MiniLM-L6-v2"):
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
self.model = AutoModel.from_pretrained(model_name)
def embed_text(self, text):
try:
inputs = self.tokenizer(text, return_tensors="pt", padding=True, truncation=True)
except Exception as e:
print(f"Error during tokenization: {e}")
return []
with torch.no_grad():
outputs = self.model(**inputs)
return outputs.last_hidden_state.mean(dim=1).squeeze().tolist()
def embed_query(self, text):
return self.embed_text(text)
def embed_documents(self, text):
return self.embed_text(text)
# Function to set up the Neo4j Vector Index
@st.cache_resource
def setup_vector_index():
return Neo4jVector.from_existing_graph(
CustomHuggingFaceEmbeddings(),
url=os.environ['NEO4J_URI'],
username=os.environ['NEO4J_USERNAME'],
password=os.environ['NEO4J_PASSWORD'],
index_name='articles',
node_label="Article",
text_node_properties=['name', 'abstract'],
embedding_node_property='embedding',
)
# Query Mistral
def query_from_mistral(context: str, user_input: str):
messages = [
{"role": "system", "content": f"Use the following context to answer the query:\n{context}"},
{"role": "user", "content": user_input},
]
completion = client.chat.completions.create(
model=MISTRAL_MODEL_NAME,
messages=messages,
max_tokens=500,
)
return completion.choices[0].message["content"]
# Find keywords
def query_article_keywords(name):
with driver.session() as session:
query = """
MATCH (a:Article)-[:CONTAIN]->(k:Keyword)
WHERE a.name = $name
RETURN k
"""
result = session.run(query, name=name)
return [record["k"] for record in result]
# extract data from retriever response
def extract_data(documents):
result = []
for doc in documents:
publication_date = doc.metadata.get('date_publication', "N/A")
page_content = doc.page_content.strip().split("\n")
title = "N/A"
abstract = "N/A"
for line in page_content:
if line.lower().startswith("name:"):
title = line[len("name:"):].strip()
elif line.lower().startswith("abstract:"):
abstract = line[len("abstract:"):].strip()
keywords = query_article_keywords(title)
keywords = [dict(node)['text'] for node in keywords]
doc_data = {
"Publication Date": publication_date,
"Title": title,
"Abstract": abstract,
"keywords": ','.join(keywords)
}
result.append(doc_data)
return result
# Main Streamlit Application
def main():
st.set_page_config(page_title="Vector Chat with Mistral", layout="centered")
# App description and features
st.title("🤖 RAG with Mistral")
st.markdown("""
## Description:
Chat with **Mistral-7B-Instruct** using context retrieved from a **Neo4j** vector index. This app allows you to ask questions, and the assistant will provide real-time, context-driven answers by querying relevant articles and their keywords from the database.
""")
st.image(image="image.jpg", caption="Neo4j")
st.markdown("""
## Key Features:
- **Real-time context search** from a Neo4j vector index.
- **Integration with Mistral-7B-Instruct model** for natural language processing.
- **Keyword extraction** from relevant articles for enhanced context-based responses.
## GitHub Repository:
You can find the source code and more information about this app on GitHub: [GitHub Repository Link](https://github.com/VeerapatSintupong123/RAG-Mistral)
""")
# Initialize the vector index
vector_index = setup_vector_index()
if "messages" not in st.session_state:
st.session_state.messages = []
with st.form(key="chat_form", clear_on_submit=True):
user_input = st.text_input("You:", "")
submit = st.form_submit_button("Send")
if submit and user_input:
st.session_state.messages.append({"role": "user", "content": user_input})
with st.spinner("Fetching response..."):
try:
context_results = vector_index.similarity_search(user_input, k=5)
if not context_results:
st.warning("No relevant context found. Please refine your query.")
response = "I'm sorry, I couldn't find any relevant information to answer your question."
else:
data_dict = extract_data(context_results)
# convert to string
context = '\n'.join([
f"Title: {doc['Title']}\n"
f"Abstract: {doc['Abstract']}\n"
f"Publication Date: {doc['Publication Date']}\n"
f"Keywords: {doc['keywords']}"
for doc in data_dict
])
response = query_from_mistral(context.strip(), user_input)
st.session_state.messages.append({"role": "bot", "content": response})
except Exception as e:
st.error(f"Error: {e}")
# Display chat history
for message in st.session_state.messages:
if message["role"] == "user":
st.markdown(f"**You:** {message['content']}")
elif message["role"] == "bot":
st.markdown(f"**Bot:** {message['content']}")
if __name__ == "__main__":
main()