Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,20 +1,41 @@
|
|
1 |
import gradio as gr
|
2 |
-
from transformers import pipeline, T5Tokenizer, T5ForConditionalGeneration
|
3 |
import os
|
|
|
|
|
|
|
4 |
token = os.getenv("HF_TOKEN")
|
|
|
5 |
|
|
|
6 |
tokenizer = T5Tokenizer.from_pretrained("sumedh/t5-base-amazonreviews", clean_up_tokenization_spaces=True)
|
7 |
model = T5ForConditionalGeneration.from_pretrained("sumedh/t5-base-amazonreviews")
|
8 |
-
summarizer = pipeline("summarization", model=
|
|
|
|
|
|
|
9 |
|
|
|
10 |
def texto_sum(text):
|
11 |
-
|
12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
|
|
|
14 |
demo = gr.Interface(
|
15 |
fn=texto_sum,
|
16 |
inputs=gr.Textbox(label="Texto a introducir:", placeholder="Introduce el texto a resumir aquí..."),
|
17 |
outputs="text"
|
18 |
)
|
19 |
|
|
|
20 |
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
+
from transformers import pipeline, T5Tokenizer, T5ForConditionalGeneration, AutoTokenizer, AutoModelForSeq2SeqLM
|
3 |
import os
|
4 |
+
import requests
|
5 |
+
|
6 |
+
# Load environment variable for Hugging Face API token
|
7 |
token = os.getenv("HF_TOKEN")
|
8 |
+
headers = {"Authorization": f"Bearer {token}"}
|
9 |
|
10 |
+
# Load summarization model and tokenizer
|
11 |
tokenizer = T5Tokenizer.from_pretrained("sumedh/t5-base-amazonreviews", clean_up_tokenization_spaces=True)
|
12 |
model = T5ForConditionalGeneration.from_pretrained("sumedh/t5-base-amazonreviews")
|
13 |
+
summarizer = pipeline("summarization", model=model, tokenizer=tokenizer)
|
14 |
+
|
15 |
+
# Translation API details
|
16 |
+
API_URL = "https://api-inference.huggingface.co/models/Helsinki-NLP/opus-mt-en-es"
|
17 |
|
18 |
+
# Summarization and Translation Function
|
19 |
def texto_sum(text):
|
20 |
+
# Summarize the input text
|
21 |
+
summary = summarizer(text, do_sample=False)[0]['summary_text']
|
22 |
+
|
23 |
+
# Translate summary using the Hugging Face API
|
24 |
+
response = requests.post(API_URL, headers=headers, json={"inputs": summary})
|
25 |
+
translation = response.json()
|
26 |
+
|
27 |
+
# Check if translation is successful
|
28 |
+
if 'error' in translation:
|
29 |
+
return f"Error in translation: {translation['error']}"
|
30 |
+
|
31 |
+
return translation[0]['translation_text']
|
32 |
|
33 |
+
# Gradio interface
|
34 |
demo = gr.Interface(
|
35 |
fn=texto_sum,
|
36 |
inputs=gr.Textbox(label="Texto a introducir:", placeholder="Introduce el texto a resumir aquí..."),
|
37 |
outputs="text"
|
38 |
)
|
39 |
|
40 |
+
# Launch the interface
|
41 |
demo.launch()
|