Spaces:
				
			
			
	
			
			
		Runtime error
		
	
	
	
			
			
	
	
	
	
		
		
		Runtime error
		
	Commit 
							
							·
						
						8573be6
	
1
								Parent(s):
							
							e030870
								
bgfs
Browse files
    	
        app.py
    CHANGED
    
    | 
         @@ -13,7 +13,8 @@ from pdf2image import convert_from_path 
     | 
|
| 13 | 
         
             
            from PIL import Image
         
     | 
| 14 | 
         
             
            from torch.utils.data import DataLoader
         
     | 
| 15 | 
         
             
            from tqdm import tqdm
         
     | 
| 16 | 
         
            -
            from transformers import  
     | 
| 
         | 
|
| 17 | 
         
             
            import re
         
     | 
| 18 | 
         
             
            import time
         
     | 
| 19 | 
         
             
            from PIL import Image
         
     | 
| 
         @@ -28,76 +29,70 @@ subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENT 
     | 
|
| 28 | 
         | 
| 29 | 
         
             
            @spaces.GPU
         
     | 
| 30 | 
         
             
            def model_inference(
         
     | 
| 31 | 
         
            -
                images, text, 
     | 
| 32 | 
         
            -
                repetition_penalty=1.2, top_p=0.8
         
     | 
| 33 | 
         
             
            ):
         
     | 
| 34 | 
         
            -
                 
     | 
| 35 | 
         
            -
                id_processor = AutoProcessor.from_pretrained("HuggingFaceM4/Idefics3-8B-Llama3")
         
     | 
| 36 | 
         
            -
             
     | 
| 37 | 
         
            -
                id_model = Idefics3ForConditionalGeneration.from_pretrained("HuggingFaceM4/Idefics3-8B-Llama3", 
         
     | 
| 38 | 
         
            -
                        torch_dtype=torch.bfloat16,
         
     | 
| 39 | 
         
            -
                        #_attn_implementation="flash_attention_2"
         
     | 
| 40 | 
         
            -
                                                                        ).to("cuda")
         
     | 
| 41 | 
         
            -
             
     | 
| 42 | 
         
            -
                BAD_WORDS_IDS = id_processor.tokenizer(["<image>", "<fake_token_around_image>"], add_special_tokens=False).input_ids
         
     | 
| 43 | 
         
            -
                EOS_WORDS_IDS = [id_processor.tokenizer.eos_token_id]
         
     | 
| 44 | 
         
             
                print(type(images))
         
     | 
| 45 | 
         
             
                print(images[0])
         
     | 
| 46 | 
         
             
                images = Image.open(images[0][0])
         
     | 
| 47 | 
         
             
                print(images)
         
     | 
| 48 | 
         
             
                print(type(images))
         
     | 
| 49 | 
         
            -
                 
     | 
| 50 | 
         
            -
             
     | 
| 51 | 
         
            -
             
     | 
| 52 | 
         
            -
             
     | 
| 53 | 
         
            -
             
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 54 | 
         | 
| 55 | 
         
            -
                 
     | 
| 56 | 
         
            -
             
     | 
| 57 | 
         | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 58 | 
         | 
| 59 | 
         
            -
                 
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 60 | 
         
             
                            {
         
     | 
| 61 | 
         
            -
                                " 
     | 
| 62 | 
         
            -
                                " 
     | 
| 63 | 
         
            -
             
     | 
| 64 | 
         
            -
             
     | 
| 65 | 
         
            -
             
     | 
| 66 | 
         
            -
             
     | 
| 67 | 
         
            -
             
     | 
| 68 | 
         
            -
                if assistant_prefix:
         
     | 
| 69 | 
         
            -
                  text = f"{assistant_prefix} {text}"
         
     | 
| 70 | 
         
            -
             
     | 
| 71 | 
         
            -
             
     | 
| 72 | 
         
            -
                prompt = id_processor.apply_chat_template(resulting_messages, add_generation_prompt=True)
         
     | 
| 73 | 
         
            -
                inputs = id_processor(text=prompt, images=[images], return_tensors="pt")
         
     | 
| 74 | 
         
            -
                inputs = {k: v.to("cuda") for k, v in inputs.items()}
         
     | 
| 75 | 
         
            -
             
     | 
| 76 | 
         
            -
                generation_args = {
         
     | 
| 77 | 
         
            -
                    "max_new_tokens": max_new_tokens,
         
     | 
| 78 | 
         
            -
                    "repetition_penalty": repetition_penalty,
         
     | 
| 79 | 
         
            -
             
     | 
| 80 | 
         
            -
                }
         
     | 
| 81 | 
         
            -
             
     | 
| 82 | 
         
            -
                assert decoding_strategy in [
         
     | 
| 83 | 
         
            -
                    "Greedy",
         
     | 
| 84 | 
         
            -
                    "Top P Sampling",
         
     | 
| 85 | 
         
             
                ]
         
     | 
| 86 | 
         
            -
                if decoding_strategy == "Greedy":
         
     | 
| 87 | 
         
            -
                    generation_args["do_sample"] = False
         
     | 
| 88 | 
         
            -
                elif decoding_strategy == "Top P Sampling":
         
     | 
| 89 | 
         
            -
                    generation_args["temperature"] = temperature
         
     | 
| 90 | 
         
            -
                    generation_args["do_sample"] = True
         
     | 
| 91 | 
         
            -
                    generation_args["top_p"] = top_p
         
     | 
| 92 | 
         
            -
             
     | 
| 93 | 
         
            -
             
     | 
| 94 | 
         
            -
                generation_args.update(inputs)
         
     | 
| 95 | 
         | 
| 96 | 
         
            -
                #  
     | 
| 97 | 
         
            -
                 
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 98 | 
         | 
| 99 | 
         
            -
                 
     | 
| 100 | 
         
            -
                 
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 101 | 
         | 
| 102 | 
         | 
| 103 | 
         | 
| 
         | 
|
| 13 | 
         
             
            from PIL import Image
         
     | 
| 14 | 
         
             
            from torch.utils.data import DataLoader
         
     | 
| 15 | 
         
             
            from tqdm import tqdm
         
     | 
| 16 | 
         
            +
            from transformers import Qwen2VLForConditionalGeneration, AutoTokenizer, AutoProcessor
         
     | 
| 17 | 
         
            +
            from qwen_vl_utils import process_vision_info
         
     | 
| 18 | 
         
             
            import re
         
     | 
| 19 | 
         
             
            import time
         
     | 
| 20 | 
         
             
            from PIL import Image
         
     | 
| 
         | 
|
| 29 | 
         | 
| 30 | 
         
             
            @spaces.GPU
         
     | 
| 31 | 
         
             
            def model_inference(
         
     | 
| 32 | 
         
            +
                images, text,
         
     | 
| 
         | 
|
| 33 | 
         
             
            ):
         
     | 
| 34 | 
         
            +
                
         
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 35 | 
         
             
                print(type(images))
         
     | 
| 36 | 
         
             
                print(images[0])
         
     | 
| 37 | 
         
             
                images = Image.open(images[0][0])
         
     | 
| 38 | 
         
             
                print(images)
         
     | 
| 39 | 
         
             
                print(type(images))
         
     | 
| 40 | 
         
            +
                # model = Qwen2VLForConditionalGeneration.from_pretrained(
         
     | 
| 41 | 
         
            +
                # "Qwen/Qwen2-VL-7B-Instruct", torch_dtype="auto", device_map="auto"
         
     | 
| 42 | 
         
            +
                # )
         
     | 
| 43 | 
         
            +
             
     | 
| 44 | 
         
            +
                #We recommend enabling flash_attention_2 for better acceleration and memory saving, especially in multi-image and video scenarios.
         
     | 
| 45 | 
         
            +
                model = Qwen2VLForConditionalGeneration.from_pretrained(
         
     | 
| 46 | 
         
            +
                    "Qwen/Qwen2-VL-7B-Instruct",
         
     | 
| 47 | 
         
            +
                    torch_dtype=torch.bfloat16,
         
     | 
| 48 | 
         
            +
                    attn_implementation="flash_attention_2",
         
     | 
| 49 | 
         
            +
                    device_map="auto",
         
     | 
| 50 | 
         
            +
                )
         
     | 
| 51 | 
         | 
| 52 | 
         
            +
                # default processer
         
     | 
| 53 | 
         
            +
                processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-7B-Instruct")
         
     | 
| 54 | 
         | 
| 55 | 
         
            +
                # The default range for the number of visual tokens per image in the model is 4-16384. You can set min_pixels and max_pixels according to your needs, such as a token count range of 256-1280, to balance speed and memory usage.
         
     | 
| 56 | 
         
            +
                # min_pixels = 256*28*28
         
     | 
| 57 | 
         
            +
                # max_pixels = 1280*28*28
         
     | 
| 58 | 
         
            +
                # processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-7B-Instruct", min_pixels=min_pixels, max_pixels=max_pixels)
         
     | 
| 59 | 
         | 
| 60 | 
         
            +
                messages = [
         
     | 
| 61 | 
         
            +
                    {
         
     | 
| 62 | 
         
            +
                        "role": "user",
         
     | 
| 63 | 
         
            +
                        "content": [
         
     | 
| 64 | 
         
             
                            {
         
     | 
| 65 | 
         
            +
                                "type": "image",
         
     | 
| 66 | 
         
            +
                                "image": images,
         
     | 
| 67 | 
         
            +
                            },
         
     | 
| 68 | 
         
            +
                            {"type": "text", "text": text},
         
     | 
| 69 | 
         
            +
                        ],
         
     | 
| 70 | 
         
            +
                    }
         
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 71 | 
         
             
                ]
         
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 72 | 
         | 
| 73 | 
         
            +
                # Preparation for inference
         
     | 
| 74 | 
         
            +
                text = processor.apply_chat_template(
         
     | 
| 75 | 
         
            +
                    messages, tokenize=False, add_generation_prompt=True
         
     | 
| 76 | 
         
            +
                )
         
     | 
| 77 | 
         
            +
                image_inputs, video_inputs = process_vision_info(messages)
         
     | 
| 78 | 
         
            +
                inputs = processor(
         
     | 
| 79 | 
         
            +
                    text=[text],
         
     | 
| 80 | 
         
            +
                    images=image_inputs,
         
     | 
| 81 | 
         
            +
                    videos=video_inputs,
         
     | 
| 82 | 
         
            +
                    padding=True,
         
     | 
| 83 | 
         
            +
                    return_tensors="pt",
         
     | 
| 84 | 
         
            +
                )
         
     | 
| 85 | 
         
            +
                inputs = inputs.to("cuda")
         
     | 
| 86 | 
         | 
| 87 | 
         
            +
                # Inference: Generation of the output
         
     | 
| 88 | 
         
            +
                generated_ids = model.generate(**inputs, max_new_tokens=128)
         
     | 
| 89 | 
         
            +
                generated_ids_trimmed = [
         
     | 
| 90 | 
         
            +
                    out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
         
     | 
| 91 | 
         
            +
                ]
         
     | 
| 92 | 
         
            +
                output_text = processor.batch_decode(
         
     | 
| 93 | 
         
            +
                    generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
         
     | 
| 94 | 
         
            +
                )
         
     | 
| 95 | 
         
            +
                return output_text[0]
         
     | 
| 96 | 
         | 
| 97 | 
         | 
| 98 | 
         | 
    	
        from transformers import Qwen2VLForConditionalGeneration, AutoTokenizer, AutoProcessor from qwen_vl_utils import process_vision_info
    ADDED
    
    | 
         
            File without changes
         
     |