Spaces:
Sleeping
Sleeping
Update rag_demo/preprocessing/base/embeddings.py
Browse files
rag_demo/preprocessing/base/embeddings.py
CHANGED
@@ -1,15 +1,9 @@
|
|
1 |
from functools import cached_property
|
2 |
from pathlib import Path
|
3 |
from typing import Optional, ClassVar
|
4 |
-
from threading import Lock
|
5 |
|
6 |
-
import numpy as np
|
7 |
-
from loguru import logger
|
8 |
-
from numpy.typing import NDArray
|
9 |
-
from sentence_transformers.SentenceTransformer import SentenceTransformer
|
10 |
-
from transformers import AutoTokenizer
|
11 |
|
12 |
-
|
13 |
|
14 |
|
15 |
class SingletonMeta(type):
|
@@ -49,97 +43,3 @@ class SingletonMeta(type):
|
|
49 |
return cls._instances[cls]
|
50 |
|
51 |
|
52 |
-
class EmbeddingModelSingleton(metaclass=SingletonMeta):
|
53 |
-
"""
|
54 |
-
A singleton class that provides a pre-trained transformer model for generating embeddings of input text.
|
55 |
-
"""
|
56 |
-
|
57 |
-
def __init__(
|
58 |
-
self,
|
59 |
-
model_id: str = settings.TEXT_EMBEDDING_MODEL_ID,
|
60 |
-
device: str = settings.RAG_MODEL_DEVICE,
|
61 |
-
cache_dir: Optional[Path] = None,
|
62 |
-
) -> None:
|
63 |
-
self._model_id = model_id
|
64 |
-
self._device = device
|
65 |
-
|
66 |
-
self._model = SentenceTransformer(
|
67 |
-
self._model_id,
|
68 |
-
device=self._device,
|
69 |
-
cache_folder=str(cache_dir) if cache_dir else None,
|
70 |
-
)
|
71 |
-
self._model.eval()
|
72 |
-
|
73 |
-
@property
|
74 |
-
def model_id(self) -> str:
|
75 |
-
"""
|
76 |
-
Returns the identifier of the pre-trained transformer model to use.
|
77 |
-
|
78 |
-
Returns:
|
79 |
-
str: The identifier of the pre-trained transformer model to use.
|
80 |
-
"""
|
81 |
-
|
82 |
-
return self._model_id
|
83 |
-
|
84 |
-
@cached_property
|
85 |
-
def embedding_size(self) -> int:
|
86 |
-
"""
|
87 |
-
Returns the size of the embeddings generated by the pre-trained transformer model.
|
88 |
-
|
89 |
-
Returns:
|
90 |
-
int: The size of the embeddings generated by the pre-trained transformer model.
|
91 |
-
"""
|
92 |
-
|
93 |
-
dummy_embedding = self._model.encode("")
|
94 |
-
|
95 |
-
return dummy_embedding.shape[0]
|
96 |
-
|
97 |
-
@property
|
98 |
-
def max_input_length(self) -> int:
|
99 |
-
"""
|
100 |
-
Returns the maximum length of input text to tokenize.
|
101 |
-
|
102 |
-
Returns:
|
103 |
-
int: The maximum length of input text to tokenize.
|
104 |
-
"""
|
105 |
-
|
106 |
-
return self._model.max_seq_length
|
107 |
-
|
108 |
-
@property
|
109 |
-
def tokenizer(self) -> AutoTokenizer:
|
110 |
-
"""
|
111 |
-
Returns the tokenizer used to tokenize input text.
|
112 |
-
|
113 |
-
Returns:
|
114 |
-
AutoTokenizer: The tokenizer used to tokenize input text.
|
115 |
-
"""
|
116 |
-
|
117 |
-
return self._model.tokenizer
|
118 |
-
|
119 |
-
def __call__(
|
120 |
-
self, input_text: str | list[str], to_list: bool = True
|
121 |
-
) -> NDArray[np.float32] | list[float] | list[list[float]]:
|
122 |
-
"""
|
123 |
-
Generates embeddings for the input text using the pre-trained transformer model.
|
124 |
-
|
125 |
-
Args:
|
126 |
-
input_text (str): The input text to generate embeddings for.
|
127 |
-
to_list (bool): Whether to return the embeddings as a list or numpy array. Defaults to True.
|
128 |
-
|
129 |
-
Returns:
|
130 |
-
Union[np.ndarray, list]: The embeddings generated for the input text.
|
131 |
-
"""
|
132 |
-
|
133 |
-
try:
|
134 |
-
embeddings = self._model.encode(input_text)
|
135 |
-
except Exception:
|
136 |
-
logger.error(
|
137 |
-
f"Error generating embeddings for {self._model_id=} and {input_text=}"
|
138 |
-
)
|
139 |
-
|
140 |
-
return [] if to_list else np.array([])
|
141 |
-
|
142 |
-
if to_list:
|
143 |
-
embeddings = embeddings.tolist()
|
144 |
-
|
145 |
-
return embeddings
|
|
|
1 |
from functools import cached_property
|
2 |
from pathlib import Path
|
3 |
from typing import Optional, ClassVar
|
|
|
4 |
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
+
|
7 |
|
8 |
|
9 |
class SingletonMeta(type):
|
|
|
43 |
return cls._instances[cls]
|
44 |
|
45 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|