Spaces:
Sleeping
Sleeping
import concurrent.futures | |
import os | |
from loguru import logger | |
from qdrant_client.models import FieldCondition, Filter, MatchValue | |
from huggingface_hub import InferenceClient | |
from rag_demo.preprocessing.base import ( | |
EmbeddedChunk, | |
) | |
from rag_demo.rag.base.query import EmbeddedQuery, Query | |
from .query_expansion import QueryExpansion | |
from .reranker import Reranker | |
from .prompt_templates import AnswerGenerationTemplate | |
from dotenv import load_dotenv | |
load_dotenv() | |
def flatten(nested_list: list) -> list: | |
"""Flatten a list of lists into a single list.""" | |
return [item for sublist in nested_list for item in sublist] | |
class RAGPipeline: | |
def __init__(self, mock: bool = False) -> None: | |
self._query_expander = QueryExpansion(mock=mock) | |
self._reranker = Reranker(mock=mock) | |
def search( | |
self, | |
query: str, | |
k: int = 3, | |
expand_to_n_queries: int = 3, | |
) -> list: | |
query_model = Query.from_str(query) | |
n_generated_queries = self._query_expander.generate( | |
query_model, expand_to_n=expand_to_n_queries | |
) | |
logger.info( | |
f"Successfully generated {len(n_generated_queries)} search queries.", | |
) | |
with concurrent.futures.ThreadPoolExecutor() as executor: | |
search_tasks = [ | |
executor.submit(self._search, _query_model, k) | |
for _query_model in n_generated_queries | |
] | |
n_k_documents = [ | |
task.result() for task in concurrent.futures.as_completed(search_tasks) | |
] | |
n_k_documents = flatten(n_k_documents) | |
n_k_documents = list(set(n_k_documents)) | |
logger.info(f"{len(n_k_documents)} documents retrieved successfully") | |
if len(n_k_documents) > 0: | |
k_documents = self.rerank(query, chunks=n_k_documents, keep_top_k=k) | |
else: | |
k_documents = [] | |
return k_documents | |
def _search(self, query: Query, k: int = 3) -> list[EmbeddedChunk]: | |
assert k >= 3, "k should be >= 3" | |
def _search_data( | |
data_category_odm: type[EmbeddedChunk], embedded_query: EmbeddedQuery | |
) -> list[EmbeddedChunk]: | |
return data_category_odm.search( | |
query_vector=embedded_query.embedding, | |
limit=k, | |
) | |
api = InferenceClient( | |
model="intfloat/multilingual-e5-large-instruct", | |
token=os.getenv("HF_API_TOKEN"), | |
) | |
embedded_query: EmbeddedQuery = EmbeddedQuery( | |
embedding=api.feature_extraction(query.content), | |
id=query.id, | |
content=query.content, | |
) | |
retrieved_chunks = _search_data(EmbeddedChunk, embedded_query) | |
logger.info(f"{len(retrieved_chunks)} documents retrieved successfully") | |
return retrieved_chunks | |
def rerank( | |
self, query: str | Query, chunks: list[EmbeddedChunk], keep_top_k: int | |
) -> list[EmbeddedChunk]: | |
if isinstance(query, str): | |
query = Query.from_str(query) | |
reranked_documents = self._reranker.generate( | |
query=query, chunks=chunks, keep_top_k=keep_top_k | |
) | |
logger.info(f"{len(reranked_documents)} documents reranked successfully.") | |
return reranked_documents | |
def generate_answer(self, query: str, reranked_chunks: list[EmbeddedChunk]) -> str: | |
context = "" | |
for chunk in reranked_chunks: | |
context += "\n Document: " | |
context += chunk.content | |
api = InferenceClient( | |
model="meta-llama/Llama-3.3-70B-Instruct", | |
token=os.getenv("HF_API_TOKEN"), | |
) | |
answer_generation_template = AnswerGenerationTemplate() | |
prompt = answer_generation_template.create_template(context, query) | |
logger.info(prompt) | |
response = api.chat_completion( | |
[{"role": "user", "content": prompt}], | |
max_tokens=8192, | |
) | |
return response.choices[0].message.content | |
def rag(self, query: str) -> tuple[str, list[str]]: | |
docs = self.search(query, k=10) | |
reranked_docs = self.rerank(query, docs, keep_top_k=10) | |
return ( | |
self.generate_answer(query, reranked_docs), | |
list(set([doc.metadata["filename"].split(".pdf")[0] for doc in reranked_docs])), | |
) | |