Adoetz commited on
Commit
82c65d0
·
verified ·
1 Parent(s): df5808f

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +29 -25
app.py CHANGED
@@ -1,11 +1,11 @@
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
3
-
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
 
 
 
 
 
9
 
10
  def respond(
11
  message,
@@ -15,34 +15,38 @@ def respond(
15
  temperature,
16
  top_p,
17
  ):
 
18
  messages = [{"role": "system", "content": system_message}]
19
 
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
 
26
  messages.append({"role": "user", "content": message})
27
 
28
- response = ""
 
29
 
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
 
34
  temperature=temperature,
35
  top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
 
 
38
 
39
- response += token
40
- yield response
 
41
 
42
 
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
  demo = gr.ChatInterface(
47
  respond,
48
  additional_inputs=[
@@ -59,6 +63,6 @@ demo = gr.ChatInterface(
59
  ],
60
  )
61
 
62
-
63
  if __name__ == "__main__":
64
- demo.launch()
 
1
  import gradio as gr
2
+ from transformers import AutoModelForCausalLM, AutoTokenizer
3
+ import torch
 
 
 
 
4
 
5
+ # Load your custom model and tokenizer
6
+ MODEL_NAME = "Qwen/Qwen2.5-1.5B-Instruct" # Replace with your model's Hugging Face repo ID or local path
7
+ tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
8
+ model = AutoModelForCausalLM.from_pretrained(MODEL_NAME, torch_dtype=torch.float16, device_map="auto")
9
 
10
  def respond(
11
  message,
 
15
  temperature,
16
  top_p,
17
  ):
18
+ # Prepare the chat history
19
  messages = [{"role": "system", "content": system_message}]
20
 
21
+ for user_msg, assistant_msg in history:
22
+ if user_msg:
23
+ messages.append({"role": "user", "content": user_msg})
24
+ if assistant_msg:
25
+ messages.append({"role": "assistant", "content": assistant_msg})
26
 
27
  messages.append({"role": "user", "content": message})
28
 
29
+ # Format the input for the model
30
+ input_text = "\n".join([f"{msg['role']}: {msg['content']}" for msg in messages])
31
 
32
+ # Generate a response
33
+ inputs = tokenizer(input_text, return_tensors="pt").to(model.device)
34
+ outputs = model.generate(
35
+ inputs.input_ids,
36
+ max_new_tokens=max_tokens,
37
  temperature=temperature,
38
  top_p=top_p,
39
+ do_sample=True,
40
+ )
41
+
42
+ response = tokenizer.decode(outputs[0], skip_special_tokens=True)
43
 
44
+ # Extract only the assistant's response
45
+ assistant_response = response.split("assistant:")[-1].strip()
46
+ yield assistant_response
47
 
48
 
49
+ # Create the Gradio interface
 
 
50
  demo = gr.ChatInterface(
51
  respond,
52
  additional_inputs=[
 
63
  ],
64
  )
65
 
66
+ # Launch the app
67
  if __name__ == "__main__":
68
+ demo.launch()