File size: 4,012 Bytes
ae6eb20
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
from sentence_transformers import SentenceTransformer
from scipy.spatial.distance import cosine
import numpy as np
from data_ret import search_relevant_data  # Assuming this function fetches the data from some source
import streamlit as st

# Load the Sentence Transformer model for similarity search
def load_similarity_model():
    st.write("Loading similarity model...")  # Show status on Streamlit
    retriever_model = SentenceTransformer("all-mpnet-base-v2")
    st.write("Similarity model loaded.")
    return retriever_model

# Create embeddings for the retrieved documents
def create_embeddings(documents, model):
    if not documents:
        st.write("No documents provided for embedding.")
        return np.array([])  # Return empty array if no documents

    st.write(f"Creating embeddings for {len(documents)} documents...")  # Show progress
    embeddings = []

    # Track progress of the embedding creation using Streamlit's progress bar
    progress_bar = st.progress(0)
    step = 1 / len(documents)  # This ensures the progress bar value stays within [0.0, 1.0]

    # Include 'text' in the document text along with 'question' and 'answer'
    document_texts = [doc['question'] + " " + doc['answer'] + " " + doc.get('text', '') for doc in documents]

    for i, doc_text in enumerate(document_texts):
        embedding = model.encode(doc_text)
        embeddings.append(embedding)
        progress_bar.progress(i * step)  # Update the progress bar within valid range

    embeddings = np.array(embeddings)
    st.write(f"Embeddings created with shape: {embeddings.shape}")
    return embeddings

# Retrieve documents based on the question embedding
def retrieve_documents(question_embedding, document_embeddings, top_k=5):
    if document_embeddings.size == 0:
        st.write("No document embeddings available for retrieval.")
        return []

    st.write("Calculating similarities between question and documents...")
    similarities = np.array([1 - cosine(question_embedding, doc_embedding) for doc_embedding in document_embeddings])

    # Get indices of top K similarities (highest similarity first)
    top_indices = similarities.argsort()[-top_k:][::-1]  # Sort in descending order
    return top_indices

# Main function to get the context from the most relevant documents based on topic and question
def get_relevant_context(question, topic):
    try:
        st.write("Searching for relevant documents based on the topic...")
        relevant_documents = search_relevant_data(topic)  # Use dynamic topic for search query

        st.write(f"Found {len(relevant_documents)} relevant documents.")

        if not relevant_documents:
            return "No relevant documents found."

        retriever_model = load_similarity_model()  # Load the similarity model

        # Create document embeddings and show progress
        document_embeddings = create_embeddings(relevant_documents, retriever_model)

        if document_embeddings.size == 0:
            return "No embeddings created for relevant documents."

        st.write("Generating question embedding and retrieving relevant documents...")
        question_embedding = retriever_model.encode(question)
        relevant_doc_indices = retrieve_documents(question_embedding, document_embeddings)

        if len(relevant_doc_indices) == 0:
            return "No relevant documents found after embedding."

        # Extract context from the top relevant documents
        contexts = []
        for idx in relevant_doc_indices:
            doc = relevant_documents[idx]
            context = doc.get('answer', '') + " " + doc.get('text', '')
            if context.strip():
                contexts.append(context)

        if not contexts:
            return "No valid contexts available for answering."

        # Return the combined context for question answering
        return " ".join(contexts)

    except Exception as e:
        st.write(f"Error processing question: {str(e)}")
        return f"Error: {str(e)}"