File size: 7,029 Bytes
b2d81b0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216

import streamlit as st
import pandas as pd
import torch
from transformers import TapexTokenizer, BartForConditionalGeneration
import xml.etree.ElementTree as ET
from io import StringIO
import logging
from datetime import datetime
import time

# Configure logging
logging.basicConfig(
  level=logging.INFO,
  format='%(asctime)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger(__name__)

@st.cache_resource
def load_model():
  """
  Load and cache the TAPEX model and tokenizer using Streamlit's caching
  """
  try:
      tokenizer = TapexTokenizer.from_pretrained(
          "microsoft/tapex-large-finetuned-wtq",
          model_max_length=1024
      )
      model = BartForConditionalGeneration.from_pretrained(
          "microsoft/tapex-large-finetuned-wtq"
      )
      device = 'cuda' if torch.cuda.is_available() else 'cpu'
      model = model.to(device)
      model.eval()
      return tokenizer, model
  except Exception as e:
      st.error(f"Error loading model: {str(e)}")
      return None, None

def parse_xml_to_dataframe(xml_string: str):
  """
  Parse XML string to DataFrame with error handling
  """
  try:
      tree = ET.parse(StringIO(xml_string))
      root = tree.getroot()

      data = []
      columns = set()

      # First pass: collect all possible columns
      for record in root.findall('.//record'):
          columns.update(elem.tag for elem in record)

      # Second pass: create data rows
      for record in root.findall('.//record'):
          row_data = {col: None for col in columns}
          for elem in record:
              row_data[elem.tag] = elem.text
          data.append(row_data)

      df = pd.DataFrame(data)

      # Convert numeric columns (automatically detect)
      for col in df.columns:
          try:
              df[col] = pd.to_numeric(df[col])
          except:
              continue

      return df, None
  except Exception as e:
      return None, f"Error parsing XML: {str(e)}"

def process_query(tokenizer, model, df, query: str):
  """
  Process a single query using the TAPEX model
  """
  try:
      start_time = time.time()

      # Handle direct DataFrame operations for common queries
      query_lower = query.lower()
      if "highest" in query_lower or "maximum" in query_lower:
          for col in df.select_dtypes(include=['number']).columns:
              if col.lower() in query_lower:
                  return df.loc[df[col].idxmax()].to_dict()
      elif "average" in query_lower or "mean" in query_lower:
          for col in df.select_dtypes(include=['number']).columns:
              if col.lower() in query_lower:
                  return f"Average {col}: {df[col].mean():.2f}"
      elif "total" in query_lower or "sum" in query_lower:
          for col in df.select_dtypes(include=['number']).columns:
              if col.lower() in query_lower:
                  return f"Total {col}: {df[col].sum():.2f}"

      # Use TAPEX for more complex queries
      with torch.no_grad():
          encoding = tokenizer(
              table=df.astype(str),
              query=query,
              return_tensors="pt",
              padding=True,
              truncation=True
          )
          outputs = model.generate(**encoding)
          answer = tokenizer.batch_decode(outputs, skip_special_tokens=True)[0]

      processing_time = time.time() - start_time
      return f"Answer: {answer} (Processing time: {processing_time:.2f}s)"

  except Exception as e:
      return f"Error processing query: {str(e)}"

def main():
  st.title("XML Data Query System")
  st.write("Upload your XML data and ask questions about it!")

  # Initialize session state for XML input and query if not exists
  if 'xml_input' not in st.session_state:
      st.session_state.xml_input = ""
  if 'current_query' not in st.session_state:
      st.session_state.current_query = ""

  # Load model
  with st.spinner("Loading TAPEX model... (this may take a few moments)"):
      tokenizer, model = load_model()
      if tokenizer is None or model is None:
          st.error("Failed to load the model. Please refresh the page.")
          return

  # XML Input
  xml_input = st.text_area(
      "Enter your XML data here:",
      value=st.session_state.xml_input,
      height=200,
      help="Paste your XML data here. Make sure it's properly formatted."
  )

  # Sample XML button
  if st.button("Load Sample XML"):
      st.session_state.xml_input = """<?xml version="1.0" encoding="UTF-8"?>
      <data>
          <records>
              <record>
                  <company>Apple</company>
                  <revenue>365.7</revenue>
                  <employees>147000</employees>
                  <year>2021</year>
              </record>
              <record>
                  <company>Microsoft</company>
                  <revenue>168.1</revenue>
                  <employees>181000</employees>
                  <year>2021</year>
              </record>
              <record>
                  <company>Amazon</company>
                  <revenue>386.1</revenue>
                  <employees>1608000</employees>
                  <year>2021</year>
              </record>
          </records>
      </data>"""
      st.rerun()

  if xml_input:
      df, error = parse_xml_to_dataframe(xml_input)
      if error:
          st.error(error)
      else:
          st.success("XML parsed successfully!")

          # Display DataFrame
          st.subheader("Parsed Data:")
          st.dataframe(df)

          # Query input
          query = st.text_input(
              "Enter your question about the data:",
              value=st.session_state.current_query,
              help="Example: 'Which company has the highest revenue?'"
          )

          # Process query
          if query:
              with st.spinner("Processing query..."):
                  result = process_query(tokenizer, model, df, query)
                  st.write(result)

          # Sample queries
          st.subheader("Sample Questions (Click to use):")
          sample_queries = [
              "Which company has the highest revenue?",
              "What is the average revenue of all companies?",
              "How many employees does Microsoft have?",
              "Which company has the most employees?",
              "What is the total revenue of all companies?"
          ]

          # Create columns for sample query buttons
          cols = st.columns(len(sample_queries))
          for idx, (col, sample_query) in enumerate(zip(cols, sample_queries)):
              with col:
                  if st.button(f"Query {idx + 1}", help=sample_query, key=f"query_btn_{idx}"):
                      st.session_state.current_query = sample_query
                      st.rerun()

          # Display the sample queries as text for reference
          with st.expander("View all sample questions"):
              for idx, query in enumerate(sample_queries, 1):
                  st.write(f"{idx}. {query}")

if __name__ == "__main__":
  main()