File size: 21,387 Bytes
bdc200f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
import os
import base64
import fitz
from io import BytesIO
from PIL import Image
import requests
from llama_index.llms.nvidia import NVIDIA
import streamlit as st
from llama_index.core import Settings
from llama_index.core import VectorStoreIndex, StorageContext
from llama_index.core.node_parser import SentenceSplitter
from llama_index.vector_stores.milvus import MilvusVectorStore
from llama_index.embeddings.nvidia import NVIDIAEmbedding

from pptx import Presentation
import subprocess
from llama_index.core import Document



def set_environment_variables():
    """Set necessary environment variables."""
    os.environ["NVIDIA_API_KEY"] = "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" #set API key

def get_b64_image_from_content(image_content):
    """Convert image content to base64 encoded string."""
    img = Image.open(BytesIO(image_content))
    if img.mode != 'RGB':
        img = img.convert('RGB')
    buffered = BytesIO()
    img.save(buffered, format="JPEG")
    return base64.b64encode(buffered.getvalue()).decode("utf-8")

def is_graph(image_content):
    """Determine if an image is a graph, plot, chart, or table."""
    res = describe_image(image_content)
    return any(keyword in res.lower() for keyword in ["graph", "plot", "chart", "table"])

def process_graph(image_content):
    """Process a graph image and generate a description."""
    deplot_description = process_graph_deplot(image_content)
    mixtral = NVIDIA(model_name="meta/llama-3.1-70b-instruct")
    response = mixtral.complete("Your responsibility is to explain charts. You are an expert in describing the responses of linearized tables into plain English text for LLMs to use. Explain the following linearized table. " + deplot_description)
    return response.text

def describe_image(image_content):
    """Generate a description of an image using NVIDIA API."""
    image_b64 = get_b64_image_from_content(image_content)
    invoke_url = "https://ai.api.nvidia.com/v1/vlm/nvidia/neva-22b"
    api_key = os.getenv("NVIDIA_API_KEY")

    if not api_key:
        raise ValueError("NVIDIA API Key is not set. Please set the NVIDIA_API_KEY environment variable.")

    headers = {
        "Authorization": f"Bearer {api_key}",
        "Accept": "application/json"
    }

    payload = {
        "messages": [
            {
                "role": "user",
                "content": f'Describe what you see in this image. <img src="data:image/png;base64,{image_b64}" />'
            }
        ],
        "max_tokens": 1024,
        "temperature": 0.20,
        "top_p": 0.70,
        "seed": 0,
        "stream": False
    }

    response = requests.post(invoke_url, headers=headers, json=payload)
    return response.json()["choices"][0]['message']['content']

def process_graph_deplot(image_content):
    """Process a graph image using NVIDIA's Deplot API."""
    invoke_url = "https://ai.api.nvidia.com/v1/vlm/google/deplot"
    image_b64 = get_b64_image_from_content(image_content)
    api_key = os.getenv("NVIDIA_API_KEY")

    if not api_key:
        raise ValueError("NVIDIA API Key is not set. Please set the NVIDIA_API_KEY environment variable.")

    headers = {
        "Authorization": f"Bearer {api_key}",
        "Accept": "application/json"
    }

    payload = {
        "messages": [
            {
                "role": "user",
                "content": f'Generate underlying data table of the figure below: <img src="data:image/png;base64,{image_b64}" />'
            }
        ],
        "max_tokens": 1024,
        "temperature": 0.20,
        "top_p": 0.20,
        "stream": False
    }

    response = requests.post(invoke_url, headers=headers, json=payload)
    return response.json()["choices"][0]['message']['content']

def extract_text_around_item(text_blocks, bbox, page_height, threshold_percentage=0.1):
    """Extract text above and below a given bounding box on a page."""
    before_text, after_text = "", ""
    vertical_threshold_distance = page_height * threshold_percentage
    horizontal_threshold_distance = bbox.width * threshold_percentage

    for block in text_blocks:
        block_bbox = fitz.Rect(block[:4])
        vertical_distance = min(abs(block_bbox.y1 - bbox.y0), abs(block_bbox.y0 - bbox.y1))
        horizontal_overlap = max(0, min(block_bbox.x1, bbox.x1) - max(block_bbox.x0, bbox.x0))

        if vertical_distance <= vertical_threshold_distance and horizontal_overlap >= -horizontal_threshold_distance:
            if block_bbox.y1 < bbox.y0 and not before_text:
                before_text = block[4]
            elif block_bbox.y0 > bbox.y1 and not after_text:
                after_text = block[4]
                break

    return before_text, after_text

def process_text_blocks(text_blocks, char_count_threshold=500):
    """Group text blocks based on a character count threshold."""
    current_group = []
    grouped_blocks = []
    current_char_count = 0

    for block in text_blocks:
        if block[-1] == 0:  # Check if the block is of text type
            block_text = block[4]
            block_char_count = len(block_text)

            if current_char_count + block_char_count <= char_count_threshold:
                current_group.append(block)
                current_char_count += block_char_count
            else:
                if current_group:
                    grouped_content = "\n".join([b[4] for b in current_group])
                    grouped_blocks.append((current_group[0], grouped_content))
                current_group = [block]
                current_char_count = block_char_count

    # Append the last group
    if current_group:
        grouped_content = "\n".join([b[4] for b in current_group])
        grouped_blocks.append((current_group[0], grouped_content))

    return grouped_blocks

def save_uploaded_file(uploaded_file):
    """Save an uploaded file to a temporary directory."""
    temp_dir = os.path.join(os.getcwd(), "vectorstore", "ppt_references", "tmp")
    os.makedirs(temp_dir, exist_ok=True)
    temp_file_path = os.path.join(temp_dir, uploaded_file.name)

    with open(temp_file_path, "wb") as temp_file:
        temp_file.write(uploaded_file.read())

    return temp_file_path



# 2ème fichier du code




def get_pdf_documents(pdf_file):
    """Process a PDF file and extract text, tables, and images."""
    all_pdf_documents = []
    ongoing_tables = {}

    try:
        f = fitz.open(stream=pdf_file.read(), filetype="pdf")
    except Exception as e:
        print(f"Error opening or processing the PDF file: {e}")
        return []

    for i in range(len(f)):
        page = f[i]
        text_blocks = [block for block in page.get_text("blocks", sort=True)
                       if block[-1] == 0 and not (block[1] < page.rect.height * 0.1 or block[3] > page.rect.height * 0.9)]
        grouped_text_blocks = process_text_blocks(text_blocks)

        table_docs, table_bboxes, ongoing_tables = parse_all_tables(pdf_file.name, page, i, text_blocks, ongoing_tables)
        all_pdf_documents.extend(table_docs)

        image_docs = parse_all_images(pdf_file.name, page, i, text_blocks)
        all_pdf_documents.extend(image_docs)

        for text_block_ctr, (heading_block, content) in enumerate(grouped_text_blocks, 1):
            heading_bbox = fitz.Rect(heading_block[:4])
            if not any(heading_bbox.intersects(table_bbox) for table_bbox in table_bboxes):
                bbox = {"x1": heading_block[0], "y1": heading_block[1], "x2": heading_block[2], "x3": heading_block[3]}
                text_doc = Document(
                    text=f"{heading_block[4]}\n{content}",
                    metadata={
                        **bbox,
                        "type": "text",
                        "page_num": i,
                        "source": f"{pdf_file.name[:-4]}-page{i}-block{text_block_ctr}"
                    },
                    id_=f"{pdf_file.name[:-4]}-page{i}-block{text_block_ctr}"
                )
                all_pdf_documents.append(text_doc)

    f.close()
    return all_pdf_documents

def parse_all_tables(filename, page, pagenum, text_blocks, ongoing_tables):
    """Extract tables from a PDF page."""
    table_docs = []
    table_bboxes = []
    try:
        tables = page.find_tables(horizontal_strategy="lines_strict", vertical_strategy="lines_strict")
        for tab in tables:
            if not tab.header.external:
                pandas_df = tab.to_pandas()
                tablerefdir = os.path.join(os.getcwd(), "vectorstore/table_references")
                os.makedirs(tablerefdir, exist_ok=True)
                df_xlsx_path = os.path.join(tablerefdir, f"table{len(table_docs)+1}-page{pagenum}.xlsx")
                pandas_df.to_excel(df_xlsx_path)
                bbox = fitz.Rect(tab.bbox)
                table_bboxes.append(bbox)

                before_text, after_text = extract_text_around_item(text_blocks, bbox, page.rect.height)

                table_img = page.get_pixmap(clip=bbox)
                table_img_path = os.path.join(tablerefdir, f"table{len(table_docs)+1}-page{pagenum}.jpg")
                table_img.save(table_img_path)
                description = process_graph(table_img.tobytes())

                caption = before_text.replace("\n", " ") + description + after_text.replace("\n", " ")
                if before_text == "" and after_text == "":
                    caption = " ".join(tab.header.names)
                table_metadata = {
                    "source": f"{filename[:-4]}-page{pagenum}-table{len(table_docs)+1}",
                    "dataframe": df_xlsx_path,
                    "image": table_img_path,
                    "caption": caption,
                    "type": "table",
                    "page_num": pagenum
                }
                all_cols = ", ".join(list(pandas_df.columns.values))
                doc = Document(text=f"This is a table with the caption: {caption}\nThe columns are {all_cols}", metadata=table_metadata)
                table_docs.append(doc)
    except Exception as e:
        print(f"Error during table extraction: {e}")
    return table_docs, table_bboxes, ongoing_tables

def parse_all_images(filename, page, pagenum, text_blocks):
    """Extract images from a PDF page."""
    image_docs = []
    image_info_list = page.get_image_info(xrefs=True)
    page_rect = page.rect

    for image_info in image_info_list:
        xref = image_info['xref']
        if xref == 0:
            continue

        img_bbox = fitz.Rect(image_info['bbox'])
        if img_bbox.width < page_rect.width / 20 or img_bbox.height < page_rect.height / 20:
            continue

        extracted_image = page.parent.extract_image(xref)
        image_data = extracted_image["image"]
        imgrefpath = os.path.join(os.getcwd(), "vectorstore/image_references")
        os.makedirs(imgrefpath, exist_ok=True)
        image_path = os.path.join(imgrefpath, f"image{xref}-page{pagenum}.png")
        with open(image_path, "wb") as img_file:
            img_file.write(image_data)

        before_text, after_text = extract_text_around_item(text_blocks, img_bbox, page.rect.height)
        if before_text == "" and after_text == "":
            continue

        image_description = " "
        if is_graph(image_data):
            image_description = process_graph(image_data)

        caption = before_text.replace("\n", " ") + image_description + after_text.replace("\n", " ")

        image_metadata = {
            "source": f"{filename[:-4]}-page{pagenum}-image{xref}",
            "image": image_path,
            "caption": caption,
            "type": "image",
            "page_num": pagenum
        }
        image_docs.append(Document(text="This is an image with the caption: " + caption, metadata=image_metadata))
    return image_docs

def process_ppt_file(ppt_path):
    """Process a PowerPoint file."""
    pdf_path = convert_ppt_to_pdf(ppt_path)
    images_data = convert_pdf_to_images(pdf_path)
    slide_texts = extract_text_and_notes_from_ppt(ppt_path)
    processed_data = []

    for (image_path, page_num), (slide_text, notes) in zip(images_data, slide_texts):
        if notes:
            notes = "\n\nThe speaker notes for this slide are: " + notes

        with open(image_path, 'rb') as image_file:
            image_content = image_file.read()

        image_description = " "
        if is_graph(image_content):
            image_description = process_graph(image_content)

        image_metadata = {
            "source": f"{os.path.basename(ppt_path)}",
            "image": image_path,
            "caption": slide_text + image_description + notes,
            "type": "image",
            "page_num": page_num
        }
        processed_data.append(Document(text="This is a slide with the text: " + slide_text + image_description, metadata=image_metadata))

    return processed_data

def convert_ppt_to_pdf(ppt_path):
    """Convert a PowerPoint file to PDF using LibreOffice."""
    base_name = os.path.basename(ppt_path)
    ppt_name_without_ext = os.path.splitext(base_name)[0].replace(' ', '_')
    new_dir_path = os.path.abspath("vectorstore/ppt_references")
    os.makedirs(new_dir_path, exist_ok=True)
    pdf_path = os.path.join(new_dir_path, f"{ppt_name_without_ext}.pdf")
    command = ['libreoffice', '--headless', '--convert-to', 'pdf', '--outdir', new_dir_path, ppt_path]
    subprocess.run(command, check=True)
    return pdf_path

def convert_pdf_to_images(pdf_path):
    """Convert a PDF file to a series of images using PyMuPDF."""
    doc = fitz.open(pdf_path)
    base_name = os.path.basename(pdf_path)
    pdf_name_without_ext = os.path.splitext(base_name)[0].replace(' ', '_')
    new_dir_path = os.path.join(os.getcwd(), "vectorstore/ppt_references")
    os.makedirs(new_dir_path, exist_ok=True)
    image_paths = []

    for page_num in range(len(doc)):
        page = doc.load_page(page_num)
        pix = page.get_pixmap()
        output_image_path = os.path.join(new_dir_path, f"{pdf_name_without_ext}_{page_num:04d}.png")
        pix.save(output_image_path)
        image_paths.append((output_image_path, page_num))
    doc.close()
    return image_paths

def extract_text_and_notes_from_ppt(ppt_path):
    """Extract text and notes from a PowerPoint file."""
    prs = Presentation(ppt_path)
    text_and_notes = []
    for slide in prs.slides:
        slide_text = ' '.join([shape.text for shape in slide.shapes if hasattr(shape, "text")])
        try:
            notes = slide.notes_slide.notes_text_frame.text if slide.notes_slide else ''
        except:
            notes = ''
        text_and_notes.append((slide_text, notes))
    return text_and_notes

def load_multimodal_data(files):
    """Load and process multiple file types."""
    documents = []
    for file in files:
        file_extension = os.path.splitext(file.name.lower())[1]
        if file_extension in ('.png', '.jpg', '.jpeg'):
            image_content = file.read()
            image_text = describe_image(image_content)
            doc = Document(text=image_text, metadata={"source": file.name, "type": "image"})
            documents.append(doc)
        elif file_extension == '.pdf':
            try:
                pdf_documents = get_pdf_documents(file)
                documents.extend(pdf_documents)
            except Exception as e:
                print(f"Error processing PDF {file.name}: {e}")
        elif file_extension in ('.ppt', '.pptx'):
            try:
                ppt_documents = process_ppt_file(save_uploaded_file(file))
                documents.extend(ppt_documents)
            except Exception as e:
                print(f"Error processing PPT {file.name}: {e}")
        else:
            text = file.read().decode("utf-8")
            doc = Document(text=text, metadata={"source": file.name, "type": "text"})
            documents.append(doc)
    return documents

def load_data_from_directory(directory):
    """Load and process multiple file types from a directory."""
    documents = []
    for filename in os.listdir(directory):
        filepath = os.path.join(directory, filename)
        file_extension = os.path.splitext(filename.lower())[1]
        print(filename)
        if file_extension in ('.png', '.jpg', '.jpeg'):
            with open(filepath, "rb") as image_file:
                image_content = image_file.read()
            image_text = describe_image(image_content)
            doc = Document(text=image_text, metadata={"source": filename, "type": "image"})
            print(doc)
            documents.append(doc)
        elif file_extension == '.pdf':
            with open(filepath, "rb") as pdf_file:
                try:
                    pdf_documents = get_pdf_documents(pdf_file)
                    documents.extend(pdf_documents)
                except Exception as e:
                    print(f"Error processing PDF {filename}: {e}")
        elif file_extension in ('.ppt', '.pptx'):
            try:
                ppt_documents = process_ppt_file(filepath)
                documents.extend(ppt_documents)
                print(ppt_documents)
            except Exception as e:
                print(f"Error processing PPT {filename}: {e}")
        else:
            with open(filepath, "r", encoding="utf-8") as text_file:
                text = text_file.read()
            doc = Document(text=text, metadata={"source": filename, "type": "text"})
            documents.append(doc)
    return documents


# 3ème fichier




# Set up the page configuration
st.set_page_config(layout="wide")

# Initialize settings
def initialize_settings():
    Settings.embed_model = NVIDIAEmbedding(model="nvidia/nv-embedqa-e5-v5", truncate="END")
    Settings.llm = NVIDIA(model="meta/llama-3.1-70b-instruct")
    Settings.text_splitter = SentenceSplitter(chunk_size=600)

# Create index from documents
def create_index(documents):
    vector_store = MilvusVectorStore(
            host = "127.0.0.1",
            port = 19530,
            dim = 1024
    )
    # vector_store = MilvusVectorStore(uri="./milvus_demo.db", dim=1024, overwrite=True) #For CPU only vector store
    storage_context = StorageContext.from_defaults(vector_store=vector_store)
    return VectorStoreIndex.from_documents(documents, storage_context=storage_context)

# Main function to run the Streamlit app
def main():
    set_environment_variables()
    initialize_settings()

    col1, col2 = st.columns([1, 2])

    with col1:
        st.title("Multimodal RAG")

        input_method = st.radio("Choose input method:", ("Upload Files", "Enter Directory Path"))

        if input_method == "Upload Files":
            uploaded_files = st.file_uploader("Drag and drop files here", accept_multiple_files=True)
            if uploaded_files and st.button("Process Files"):
                with st.spinner("Processing files..."):
                    documents = load_multimodal_data(uploaded_files)
                    st.session_state['index'] = create_index(documents)
                    st.session_state['history'] = []
                    st.success("Files processed and index created!")
        else:
            directory_path = st.text_input("Enter directory path:")
            if directory_path and st.button("Process Directory"):
                if os.path.isdir(directory_path):
                    with st.spinner("Processing directory..."):
                        documents = load_data_from_directory(directory_path)
                        st.session_state['index'] = create_index(documents)
                        st.session_state['history'] = []
                        st.success("Directory processed and index created!")
                else:
                    st.error("Invalid directory path. Please enter a valid path.")

    with col2:
        if 'index' in st.session_state:
            st.title("Chat")
            if 'history' not in st.session_state:
                st.session_state['history'] = []

            query_engine = st.session_state['index'].as_query_engine(similarity_top_k=5, streaming=True)

            user_input = st.chat_input("Enter your query:")

            # Display chat messages
            chat_container = st.container()
            with chat_container:
                for message in st.session_state['history']:
                    with st.chat_message(message["role"]):
                        st.markdown(message["content"])

            if user_input:
                with st.chat_message("user"):
                    st.markdown(user_input)
                st.session_state['history'].append({"role": "user", "content": user_input})

                with st.chat_message("assistant"):
                    message_placeholder = st.empty()
                    full_response = ""
                    response = query_engine.query(user_input)
                    for token in response.response_gen:
                        full_response += token
                        message_placeholder.markdown(full_response + "▌")
                    message_placeholder.markdown(full_response)
                st.session_state['history'].append({"role": "assistant", "content": full_response})

            # Add a clear button
            if st.button("Clear Chat"):
                st.session_state['history'] = []
                st.rerun()

if __name__ == "__main__":
    main()