Spaces:
Sleeping
Sleeping
File size: 21,387 Bytes
bdc200f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 |
import os
import base64
import fitz
from io import BytesIO
from PIL import Image
import requests
from llama_index.llms.nvidia import NVIDIA
import streamlit as st
from llama_index.core import Settings
from llama_index.core import VectorStoreIndex, StorageContext
from llama_index.core.node_parser import SentenceSplitter
from llama_index.vector_stores.milvus import MilvusVectorStore
from llama_index.embeddings.nvidia import NVIDIAEmbedding
from pptx import Presentation
import subprocess
from llama_index.core import Document
def set_environment_variables():
"""Set necessary environment variables."""
os.environ["NVIDIA_API_KEY"] = "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" #set API key
def get_b64_image_from_content(image_content):
"""Convert image content to base64 encoded string."""
img = Image.open(BytesIO(image_content))
if img.mode != 'RGB':
img = img.convert('RGB')
buffered = BytesIO()
img.save(buffered, format="JPEG")
return base64.b64encode(buffered.getvalue()).decode("utf-8")
def is_graph(image_content):
"""Determine if an image is a graph, plot, chart, or table."""
res = describe_image(image_content)
return any(keyword in res.lower() for keyword in ["graph", "plot", "chart", "table"])
def process_graph(image_content):
"""Process a graph image and generate a description."""
deplot_description = process_graph_deplot(image_content)
mixtral = NVIDIA(model_name="meta/llama-3.1-70b-instruct")
response = mixtral.complete("Your responsibility is to explain charts. You are an expert in describing the responses of linearized tables into plain English text for LLMs to use. Explain the following linearized table. " + deplot_description)
return response.text
def describe_image(image_content):
"""Generate a description of an image using NVIDIA API."""
image_b64 = get_b64_image_from_content(image_content)
invoke_url = "https://ai.api.nvidia.com/v1/vlm/nvidia/neva-22b"
api_key = os.getenv("NVIDIA_API_KEY")
if not api_key:
raise ValueError("NVIDIA API Key is not set. Please set the NVIDIA_API_KEY environment variable.")
headers = {
"Authorization": f"Bearer {api_key}",
"Accept": "application/json"
}
payload = {
"messages": [
{
"role": "user",
"content": f'Describe what you see in this image. <img src="data:image/png;base64,{image_b64}" />'
}
],
"max_tokens": 1024,
"temperature": 0.20,
"top_p": 0.70,
"seed": 0,
"stream": False
}
response = requests.post(invoke_url, headers=headers, json=payload)
return response.json()["choices"][0]['message']['content']
def process_graph_deplot(image_content):
"""Process a graph image using NVIDIA's Deplot API."""
invoke_url = "https://ai.api.nvidia.com/v1/vlm/google/deplot"
image_b64 = get_b64_image_from_content(image_content)
api_key = os.getenv("NVIDIA_API_KEY")
if not api_key:
raise ValueError("NVIDIA API Key is not set. Please set the NVIDIA_API_KEY environment variable.")
headers = {
"Authorization": f"Bearer {api_key}",
"Accept": "application/json"
}
payload = {
"messages": [
{
"role": "user",
"content": f'Generate underlying data table of the figure below: <img src="data:image/png;base64,{image_b64}" />'
}
],
"max_tokens": 1024,
"temperature": 0.20,
"top_p": 0.20,
"stream": False
}
response = requests.post(invoke_url, headers=headers, json=payload)
return response.json()["choices"][0]['message']['content']
def extract_text_around_item(text_blocks, bbox, page_height, threshold_percentage=0.1):
"""Extract text above and below a given bounding box on a page."""
before_text, after_text = "", ""
vertical_threshold_distance = page_height * threshold_percentage
horizontal_threshold_distance = bbox.width * threshold_percentage
for block in text_blocks:
block_bbox = fitz.Rect(block[:4])
vertical_distance = min(abs(block_bbox.y1 - bbox.y0), abs(block_bbox.y0 - bbox.y1))
horizontal_overlap = max(0, min(block_bbox.x1, bbox.x1) - max(block_bbox.x0, bbox.x0))
if vertical_distance <= vertical_threshold_distance and horizontal_overlap >= -horizontal_threshold_distance:
if block_bbox.y1 < bbox.y0 and not before_text:
before_text = block[4]
elif block_bbox.y0 > bbox.y1 and not after_text:
after_text = block[4]
break
return before_text, after_text
def process_text_blocks(text_blocks, char_count_threshold=500):
"""Group text blocks based on a character count threshold."""
current_group = []
grouped_blocks = []
current_char_count = 0
for block in text_blocks:
if block[-1] == 0: # Check if the block is of text type
block_text = block[4]
block_char_count = len(block_text)
if current_char_count + block_char_count <= char_count_threshold:
current_group.append(block)
current_char_count += block_char_count
else:
if current_group:
grouped_content = "\n".join([b[4] for b in current_group])
grouped_blocks.append((current_group[0], grouped_content))
current_group = [block]
current_char_count = block_char_count
# Append the last group
if current_group:
grouped_content = "\n".join([b[4] for b in current_group])
grouped_blocks.append((current_group[0], grouped_content))
return grouped_blocks
def save_uploaded_file(uploaded_file):
"""Save an uploaded file to a temporary directory."""
temp_dir = os.path.join(os.getcwd(), "vectorstore", "ppt_references", "tmp")
os.makedirs(temp_dir, exist_ok=True)
temp_file_path = os.path.join(temp_dir, uploaded_file.name)
with open(temp_file_path, "wb") as temp_file:
temp_file.write(uploaded_file.read())
return temp_file_path
# 2ème fichier du code
def get_pdf_documents(pdf_file):
"""Process a PDF file and extract text, tables, and images."""
all_pdf_documents = []
ongoing_tables = {}
try:
f = fitz.open(stream=pdf_file.read(), filetype="pdf")
except Exception as e:
print(f"Error opening or processing the PDF file: {e}")
return []
for i in range(len(f)):
page = f[i]
text_blocks = [block for block in page.get_text("blocks", sort=True)
if block[-1] == 0 and not (block[1] < page.rect.height * 0.1 or block[3] > page.rect.height * 0.9)]
grouped_text_blocks = process_text_blocks(text_blocks)
table_docs, table_bboxes, ongoing_tables = parse_all_tables(pdf_file.name, page, i, text_blocks, ongoing_tables)
all_pdf_documents.extend(table_docs)
image_docs = parse_all_images(pdf_file.name, page, i, text_blocks)
all_pdf_documents.extend(image_docs)
for text_block_ctr, (heading_block, content) in enumerate(grouped_text_blocks, 1):
heading_bbox = fitz.Rect(heading_block[:4])
if not any(heading_bbox.intersects(table_bbox) for table_bbox in table_bboxes):
bbox = {"x1": heading_block[0], "y1": heading_block[1], "x2": heading_block[2], "x3": heading_block[3]}
text_doc = Document(
text=f"{heading_block[4]}\n{content}",
metadata={
**bbox,
"type": "text",
"page_num": i,
"source": f"{pdf_file.name[:-4]}-page{i}-block{text_block_ctr}"
},
id_=f"{pdf_file.name[:-4]}-page{i}-block{text_block_ctr}"
)
all_pdf_documents.append(text_doc)
f.close()
return all_pdf_documents
def parse_all_tables(filename, page, pagenum, text_blocks, ongoing_tables):
"""Extract tables from a PDF page."""
table_docs = []
table_bboxes = []
try:
tables = page.find_tables(horizontal_strategy="lines_strict", vertical_strategy="lines_strict")
for tab in tables:
if not tab.header.external:
pandas_df = tab.to_pandas()
tablerefdir = os.path.join(os.getcwd(), "vectorstore/table_references")
os.makedirs(tablerefdir, exist_ok=True)
df_xlsx_path = os.path.join(tablerefdir, f"table{len(table_docs)+1}-page{pagenum}.xlsx")
pandas_df.to_excel(df_xlsx_path)
bbox = fitz.Rect(tab.bbox)
table_bboxes.append(bbox)
before_text, after_text = extract_text_around_item(text_blocks, bbox, page.rect.height)
table_img = page.get_pixmap(clip=bbox)
table_img_path = os.path.join(tablerefdir, f"table{len(table_docs)+1}-page{pagenum}.jpg")
table_img.save(table_img_path)
description = process_graph(table_img.tobytes())
caption = before_text.replace("\n", " ") + description + after_text.replace("\n", " ")
if before_text == "" and after_text == "":
caption = " ".join(tab.header.names)
table_metadata = {
"source": f"{filename[:-4]}-page{pagenum}-table{len(table_docs)+1}",
"dataframe": df_xlsx_path,
"image": table_img_path,
"caption": caption,
"type": "table",
"page_num": pagenum
}
all_cols = ", ".join(list(pandas_df.columns.values))
doc = Document(text=f"This is a table with the caption: {caption}\nThe columns are {all_cols}", metadata=table_metadata)
table_docs.append(doc)
except Exception as e:
print(f"Error during table extraction: {e}")
return table_docs, table_bboxes, ongoing_tables
def parse_all_images(filename, page, pagenum, text_blocks):
"""Extract images from a PDF page."""
image_docs = []
image_info_list = page.get_image_info(xrefs=True)
page_rect = page.rect
for image_info in image_info_list:
xref = image_info['xref']
if xref == 0:
continue
img_bbox = fitz.Rect(image_info['bbox'])
if img_bbox.width < page_rect.width / 20 or img_bbox.height < page_rect.height / 20:
continue
extracted_image = page.parent.extract_image(xref)
image_data = extracted_image["image"]
imgrefpath = os.path.join(os.getcwd(), "vectorstore/image_references")
os.makedirs(imgrefpath, exist_ok=True)
image_path = os.path.join(imgrefpath, f"image{xref}-page{pagenum}.png")
with open(image_path, "wb") as img_file:
img_file.write(image_data)
before_text, after_text = extract_text_around_item(text_blocks, img_bbox, page.rect.height)
if before_text == "" and after_text == "":
continue
image_description = " "
if is_graph(image_data):
image_description = process_graph(image_data)
caption = before_text.replace("\n", " ") + image_description + after_text.replace("\n", " ")
image_metadata = {
"source": f"{filename[:-4]}-page{pagenum}-image{xref}",
"image": image_path,
"caption": caption,
"type": "image",
"page_num": pagenum
}
image_docs.append(Document(text="This is an image with the caption: " + caption, metadata=image_metadata))
return image_docs
def process_ppt_file(ppt_path):
"""Process a PowerPoint file."""
pdf_path = convert_ppt_to_pdf(ppt_path)
images_data = convert_pdf_to_images(pdf_path)
slide_texts = extract_text_and_notes_from_ppt(ppt_path)
processed_data = []
for (image_path, page_num), (slide_text, notes) in zip(images_data, slide_texts):
if notes:
notes = "\n\nThe speaker notes for this slide are: " + notes
with open(image_path, 'rb') as image_file:
image_content = image_file.read()
image_description = " "
if is_graph(image_content):
image_description = process_graph(image_content)
image_metadata = {
"source": f"{os.path.basename(ppt_path)}",
"image": image_path,
"caption": slide_text + image_description + notes,
"type": "image",
"page_num": page_num
}
processed_data.append(Document(text="This is a slide with the text: " + slide_text + image_description, metadata=image_metadata))
return processed_data
def convert_ppt_to_pdf(ppt_path):
"""Convert a PowerPoint file to PDF using LibreOffice."""
base_name = os.path.basename(ppt_path)
ppt_name_without_ext = os.path.splitext(base_name)[0].replace(' ', '_')
new_dir_path = os.path.abspath("vectorstore/ppt_references")
os.makedirs(new_dir_path, exist_ok=True)
pdf_path = os.path.join(new_dir_path, f"{ppt_name_without_ext}.pdf")
command = ['libreoffice', '--headless', '--convert-to', 'pdf', '--outdir', new_dir_path, ppt_path]
subprocess.run(command, check=True)
return pdf_path
def convert_pdf_to_images(pdf_path):
"""Convert a PDF file to a series of images using PyMuPDF."""
doc = fitz.open(pdf_path)
base_name = os.path.basename(pdf_path)
pdf_name_without_ext = os.path.splitext(base_name)[0].replace(' ', '_')
new_dir_path = os.path.join(os.getcwd(), "vectorstore/ppt_references")
os.makedirs(new_dir_path, exist_ok=True)
image_paths = []
for page_num in range(len(doc)):
page = doc.load_page(page_num)
pix = page.get_pixmap()
output_image_path = os.path.join(new_dir_path, f"{pdf_name_without_ext}_{page_num:04d}.png")
pix.save(output_image_path)
image_paths.append((output_image_path, page_num))
doc.close()
return image_paths
def extract_text_and_notes_from_ppt(ppt_path):
"""Extract text and notes from a PowerPoint file."""
prs = Presentation(ppt_path)
text_and_notes = []
for slide in prs.slides:
slide_text = ' '.join([shape.text for shape in slide.shapes if hasattr(shape, "text")])
try:
notes = slide.notes_slide.notes_text_frame.text if slide.notes_slide else ''
except:
notes = ''
text_and_notes.append((slide_text, notes))
return text_and_notes
def load_multimodal_data(files):
"""Load and process multiple file types."""
documents = []
for file in files:
file_extension = os.path.splitext(file.name.lower())[1]
if file_extension in ('.png', '.jpg', '.jpeg'):
image_content = file.read()
image_text = describe_image(image_content)
doc = Document(text=image_text, metadata={"source": file.name, "type": "image"})
documents.append(doc)
elif file_extension == '.pdf':
try:
pdf_documents = get_pdf_documents(file)
documents.extend(pdf_documents)
except Exception as e:
print(f"Error processing PDF {file.name}: {e}")
elif file_extension in ('.ppt', '.pptx'):
try:
ppt_documents = process_ppt_file(save_uploaded_file(file))
documents.extend(ppt_documents)
except Exception as e:
print(f"Error processing PPT {file.name}: {e}")
else:
text = file.read().decode("utf-8")
doc = Document(text=text, metadata={"source": file.name, "type": "text"})
documents.append(doc)
return documents
def load_data_from_directory(directory):
"""Load and process multiple file types from a directory."""
documents = []
for filename in os.listdir(directory):
filepath = os.path.join(directory, filename)
file_extension = os.path.splitext(filename.lower())[1]
print(filename)
if file_extension in ('.png', '.jpg', '.jpeg'):
with open(filepath, "rb") as image_file:
image_content = image_file.read()
image_text = describe_image(image_content)
doc = Document(text=image_text, metadata={"source": filename, "type": "image"})
print(doc)
documents.append(doc)
elif file_extension == '.pdf':
with open(filepath, "rb") as pdf_file:
try:
pdf_documents = get_pdf_documents(pdf_file)
documents.extend(pdf_documents)
except Exception as e:
print(f"Error processing PDF {filename}: {e}")
elif file_extension in ('.ppt', '.pptx'):
try:
ppt_documents = process_ppt_file(filepath)
documents.extend(ppt_documents)
print(ppt_documents)
except Exception as e:
print(f"Error processing PPT {filename}: {e}")
else:
with open(filepath, "r", encoding="utf-8") as text_file:
text = text_file.read()
doc = Document(text=text, metadata={"source": filename, "type": "text"})
documents.append(doc)
return documents
# 3ème fichier
# Set up the page configuration
st.set_page_config(layout="wide")
# Initialize settings
def initialize_settings():
Settings.embed_model = NVIDIAEmbedding(model="nvidia/nv-embedqa-e5-v5", truncate="END")
Settings.llm = NVIDIA(model="meta/llama-3.1-70b-instruct")
Settings.text_splitter = SentenceSplitter(chunk_size=600)
# Create index from documents
def create_index(documents):
vector_store = MilvusVectorStore(
host = "127.0.0.1",
port = 19530,
dim = 1024
)
# vector_store = MilvusVectorStore(uri="./milvus_demo.db", dim=1024, overwrite=True) #For CPU only vector store
storage_context = StorageContext.from_defaults(vector_store=vector_store)
return VectorStoreIndex.from_documents(documents, storage_context=storage_context)
# Main function to run the Streamlit app
def main():
set_environment_variables()
initialize_settings()
col1, col2 = st.columns([1, 2])
with col1:
st.title("Multimodal RAG")
input_method = st.radio("Choose input method:", ("Upload Files", "Enter Directory Path"))
if input_method == "Upload Files":
uploaded_files = st.file_uploader("Drag and drop files here", accept_multiple_files=True)
if uploaded_files and st.button("Process Files"):
with st.spinner("Processing files..."):
documents = load_multimodal_data(uploaded_files)
st.session_state['index'] = create_index(documents)
st.session_state['history'] = []
st.success("Files processed and index created!")
else:
directory_path = st.text_input("Enter directory path:")
if directory_path and st.button("Process Directory"):
if os.path.isdir(directory_path):
with st.spinner("Processing directory..."):
documents = load_data_from_directory(directory_path)
st.session_state['index'] = create_index(documents)
st.session_state['history'] = []
st.success("Directory processed and index created!")
else:
st.error("Invalid directory path. Please enter a valid path.")
with col2:
if 'index' in st.session_state:
st.title("Chat")
if 'history' not in st.session_state:
st.session_state['history'] = []
query_engine = st.session_state['index'].as_query_engine(similarity_top_k=5, streaming=True)
user_input = st.chat_input("Enter your query:")
# Display chat messages
chat_container = st.container()
with chat_container:
for message in st.session_state['history']:
with st.chat_message(message["role"]):
st.markdown(message["content"])
if user_input:
with st.chat_message("user"):
st.markdown(user_input)
st.session_state['history'].append({"role": "user", "content": user_input})
with st.chat_message("assistant"):
message_placeholder = st.empty()
full_response = ""
response = query_engine.query(user_input)
for token in response.response_gen:
full_response += token
message_placeholder.markdown(full_response + "▌")
message_placeholder.markdown(full_response)
st.session_state['history'].append({"role": "assistant", "content": full_response})
# Add a clear button
if st.button("Clear Chat"):
st.session_state['history'] = []
st.rerun()
if __name__ == "__main__":
main()
|