Spaces:
Runtime error
Runtime error
| import numpy as np | |
| import os | |
| import keras | |
| import pandas as pd | |
| import seaborn as sns | |
| import matplotlib.pyplot as plt | |
| from keras.models import Sequential | |
| from PIL import Image | |
| from keras.layers import Conv2D, Flatten, Dense, Dropout, BatchNormalization, MaxPooling2D | |
| from sklearn.preprocessing import OneHotEncoder | |
| import pickle | |
| import gradio as gr | |
| def load_model(): | |
| save_path = 'model.pkl' | |
| with open(save_path, 'rb') as file: | |
| model = pickle.load(file) | |
| return model | |
| def predict_dementia(images, model): | |
| predictions = [] | |
| for image in images: | |
| img = Image.fromarray(image.astype('uint8')) | |
| img = img.resize((128, 128)) | |
| img = np.array(img) | |
| img = img.reshape(1, 128, 128, 3) | |
| prediction = model.predict(img) | |
| prediction_class = np.argmax(prediction) | |
| predictions.append(names(prediction_class)) | |
| return predictions | |
| def names(number): | |
| if number == 0: | |
| return 'Non Demented' | |
| elif number == 1: | |
| return 'Mild Dementia' | |
| elif number == 2: | |
| return 'Moderate Dementia' | |
| elif number == 3: | |
| return 'Very Mild Dementia' | |
| else: | |
| return 'Error in Prediction' | |
| def main(images): | |
| model = load_model() | |
| predictions = predict_dementia(images, model) | |
| return predictions | |
| iface = gr.Interface(fn=main, | |
| inputs="image", | |
| outputs="text", | |
| title="Dementia Classification", | |
| description="Classify dementia based on brain images", | |
| examples=[["Non(1).jpg"],["Moderate.jpg"],["Mild.jpg"]]) | |
| iface.launch(debug =True) |