VARAG / app.py
AdithyaSK's picture
VARAG initial commit - Adithya s K
c9bf657
raw
history blame
17 kB
import gradio as gr
import os
import lancedb
from sentence_transformers import SentenceTransformer
from dotenv import load_dotenv
from typing import List
from PIL import Image
import base64
import io
import time
from collections import namedtuple
import pandas as pd
import concurrent.futures
from varag.rag import SimpleRAG, VisionRAG, ColpaliRAG, HybridColpaliRAG
from transformers import Qwen2VLForConditionalGeneration, AutoTokenizer, AutoProcessor
from qwen_vl_utils import process_vision_info
from varag.chunking import FixedTokenChunker
from varag.utils import get_model_colpali
import argparse
import spaces
import torch
load_dotenv()
# Initialize shared database
shared_db = lancedb.connect("~/rag_demo_db")
@spaces.GPU
def get_all_model():
# Initialize embedding models
# text_embedding_model = SentenceTransformer("all-MiniLM-L6-v2", trust_remote_code=True)
text_embedding_model = SentenceTransformer(
"BAAI/bge-base-en", trust_remote_code=True
)
# text_embedding_model = SentenceTransformer("BAAI/bge-large-en-v1.5", trust_remote_code=True)
# text_embedding_model = SentenceTransformer("BAAI/bge-small-en-v1.5", trust_remote_code=True)
image_embedding_model = SentenceTransformer(
"jinaai/jina-clip-v1", trust_remote_code=True
)
colpali_model, colpali_processor = get_model_colpali("vidore/colpali-v1.2")
return text_embedding_model, image_embedding_model, colpali_model, colpali_processor
text_embedding_model, image_embedding_model, colpali_model, colpali_processor = (
get_all_model()
)
# Initialize RAG instances
simple_rag = SimpleRAG(
text_embedding_model=text_embedding_model, db=shared_db, table_name="simpleDemo"
)
vision_rag = VisionRAG(
image_embedding_model=image_embedding_model, db=shared_db, table_name="visionDemo"
)
colpali_rag = ColpaliRAG(
colpali_model=colpali_model,
colpali_processor=colpali_processor,
db=shared_db,
table_name="colpaliDemo",
)
hybrid_rag = HybridColpaliRAG(
colpali_model=colpali_model,
colpali_processor=colpali_processor,
image_embedding_model=image_embedding_model,
db=shared_db,
table_name="hybridDemo",
)
IngestResult = namedtuple("IngestResult", ["status_text", "progress_table"])
@spaces.GPU
def ingest_data(pdf_files, use_ocr, chunk_size, progress=gr.Progress()):
file_paths = [pdf_file.name for pdf_file in pdf_files]
total_start_time = time.time()
progress_data = []
# SimpleRAG
yield IngestResult(
status_text="Starting SimpleRAG ingestion...\n",
progress_table=pd.DataFrame(progress_data),
)
start_time = time.time()
simple_rag.index(
file_paths,
recursive=False,
chunking_strategy=FixedTokenChunker(chunk_size=chunk_size),
metadata={"source": "gradio_upload"},
overwrite=True,
verbose=True,
ocr=use_ocr,
)
simple_time = time.time() - start_time
progress_data.append(
{"Technique": "SimpleRAG", "Time Taken (s)": f"{simple_time:.2f}"}
)
yield IngestResult(
status_text=f"SimpleRAG ingestion complete. Time taken: {simple_time:.2f} seconds\n\n",
progress_table=pd.DataFrame(progress_data),
)
# progress(0.25, desc="SimpleRAG complete")
# VisionRAG
yield IngestResult(
status_text="Starting VisionRAG ingestion...\n",
progress_table=pd.DataFrame(progress_data),
)
start_time = time.time()
vision_rag.index(file_paths, overwrite=False, recursive=False, verbose=True)
vision_time = time.time() - start_time
progress_data.append(
{"Technique": "VisionRAG", "Time Taken (s)": f"{vision_time:.2f}"}
)
yield IngestResult(
status_text=f"VisionRAG ingestion complete. Time taken: {vision_time:.2f} seconds\n\n",
progress_table=pd.DataFrame(progress_data),
)
# progress(0.5, desc="VisionRAG complete")
# ColpaliRAG
yield IngestResult(
status_text="Starting ColpaliRAG ingestion...\n",
progress_table=pd.DataFrame(progress_data),
)
start_time = time.time()
colpali_rag.index(file_paths, overwrite=False, recursive=False, verbose=True)
colpali_time = time.time() - start_time
progress_data.append(
{"Technique": "ColpaliRAG", "Time Taken (s)": f"{colpali_time:.2f}"}
)
yield IngestResult(
status_text=f"ColpaliRAG ingestion complete. Time taken: {colpali_time:.2f} seconds\n\n",
progress_table=pd.DataFrame(progress_data),
)
# progress(0.75, desc="ColpaliRAG complete")
# HybridColpaliRAG
yield IngestResult(
status_text="Starting HybridColpaliRAG ingestion...\n",
progress_table=pd.DataFrame(progress_data),
)
start_time = time.time()
hybrid_rag.index(file_paths, overwrite=False, recursive=False, verbose=True)
hybrid_time = time.time() - start_time
progress_data.append(
{"Technique": "HybridColpaliRAG", "Time Taken (s)": f"{hybrid_time:.2f}"}
)
yield IngestResult(
status_text=f"HybridColpaliRAG ingestion complete. Time taken: {hybrid_time:.2f} seconds\n\n",
progress_table=pd.DataFrame(progress_data),
)
# progress(1.0, desc="HybridColpaliRAG complete")
total_time = time.time() - total_start_time
progress_data.append({"Technique": "Total", "Time Taken (s)": f"{total_time:.2f}"})
yield IngestResult(
status_text=f"Total ingestion time: {total_time:.2f} seconds",
progress_table=pd.DataFrame(progress_data),
)
@spaces.GPU
def retrieve_data(query, top_k, sequential=False):
results = {}
timings = {}
def retrieve_simple():
start_time = time.time()
simple_results = simple_rag.search(query, k=top_k)
print(simple_results)
simple_context = []
for i, r in enumerate(simple_results, 1):
context_piece = f"Result {i}:\n"
context_piece += f"Source: {r.get('document_name', 'Unknown')}\n"
context_piece += f"Chunk Index: {r.get('chunk_index', 'Unknown')}\n"
context_piece += f"Content:\n{r['text']}\n"
context_piece += "-" * 40 + "\n" # Separator
simple_context.append(context_piece)
simple_context = "\n".join(simple_context)
end_time = time.time()
return "SimpleRAG", simple_context, end_time - start_time
def retrieve_vision():
start_time = time.time()
vision_results = vision_rag.search(query, k=top_k)
vision_images = [r["image"] for r in vision_results]
end_time = time.time()
return "VisionRAG", vision_images, end_time - start_time
def retrieve_colpali():
start_time = time.time()
colpali_results = colpali_rag.search(query, k=top_k)
colpali_images = [r["image"] for r in colpali_results]
end_time = time.time()
return "ColpaliRAG", colpali_images, end_time - start_time
def retrieve_hybrid():
start_time = time.time()
hybrid_results = hybrid_rag.search(query, k=top_k, use_image_search=True)
hybrid_images = [r["image"] for r in hybrid_results]
end_time = time.time()
return "HybridColpaliRAG", hybrid_images, end_time - start_time
retrieval_functions = [
retrieve_simple,
retrieve_vision,
retrieve_colpali,
retrieve_hybrid,
]
if sequential:
for func in retrieval_functions:
rag_type, content, timing = func()
results[rag_type] = content
timings[rag_type] = timing
else:
with concurrent.futures.ThreadPoolExecutor() as executor:
future_results = [executor.submit(func) for func in retrieval_functions]
for future in concurrent.futures.as_completed(future_results):
rag_type, content, timing = future.result()
results[rag_type] = content
timings[rag_type] = timing
return results, timings
# @spaces.GPU
# def query_data(query, retrieved_results):
# results = {}
# # SimpleRAG
# simple_context = retrieved_results["SimpleRAG"]
# simple_response = llm.query(
# context=simple_context,
# system_prompt="Given the below information answer the questions",
# query=query,
# )
# results["SimpleRAG"] = {"response": simple_response, "context": simple_context}
# # VisionRAG
# vision_images = retrieved_results["VisionRAG"]
# vision_context = f"Query: {query}\n\nRelevant image information:\n" + "\n".join(
# [f"Image {i+1}" for i in range(len(vision_images))]
# )
# vision_response = vlm.query(vision_context, vision_images, max_tokens=500)
# results["VisionRAG"] = {
# "response": vision_response,
# "context": vision_context,
# "images": vision_images,
# }
# # ColpaliRAG
# colpali_images = retrieved_results["ColpaliRAG"]
# colpali_context = f"Query: {query}\n\nRelevant image information:\n" + "\n".join(
# [f"Image {i+1}" for i in range(len(colpali_images))]
# )
# colpali_response = vlm.query(colpali_context, colpali_images, max_tokens=500)
# results["ColpaliRAG"] = {
# "response": colpali_response,
# "context": colpali_context,
# "images": colpali_images,
# }
# # HybridColpaliRAG
# hybrid_images = retrieved_results["HybridColpaliRAG"]
# hybrid_context = f"Query: {query}\n\nRelevant image information:\n" + "\n".join(
# [f"Image {i+1}" for i in range(len(hybrid_images))]
# )
# hybrid_response = vlm.query(hybrid_context, hybrid_images, max_tokens=500)
# results["HybridColpaliRAG"] = {
# "response": hybrid_response,
# "context": hybrid_context,
# "images": hybrid_images,
# }
# return results
def update_api_key(api_key):
os.environ["OPENAI_API_KEY"] = api_key
return "API key updated successfully."
def change_table(simple_table, vision_table, colpali_table, hybrid_table):
simple_rag.change_table(simple_table)
vision_rag.change_table(vision_table)
colpali_rag.change_table(colpali_table)
hybrid_rag.change_table(hybrid_table)
return "Table names updated successfully."
def gradio_interface():
with gr.Blocks(
theme=gr.themes.Monochrome(radius_size=gr.themes.sizes.radius_none)
) as demo:
gr.Markdown(
"""
# πŸ‘οΈπŸ‘οΈ Vision RAG Playground
### Explore and Compare Vision-Augmented Retrieval Techniques
Built on [VARAG](https://github.com/adithya-s-k/VARAG) - Vision-Augmented Retrieval and Generation
**[⭐ Star the Repository](https://github.com/adithya-s-k/VARAG)** to support the project!
1. **Simple RAG**: Text-based retrieval with OCR support for scanned documents.
2. **Vision RAG**: Combines text and image retrieval using cross-modal embeddings.
3. **ColPali RAG**: Embeds entire document pages as images for layout-aware retrieval.
4. **Hybrid ColPali RAG**: Two-stage retrieval combining image embeddings and ColPali's token-level matching.
"""
)
with gr.Tab("Ingest Data"):
pdf_input = gr.File(
label="Upload PDF(s)", file_count="multiple", file_types=["pdf"]
)
use_ocr = gr.Checkbox(label="Use OCR (for SimpleRAG)")
chunk_size = gr.Slider(
50, 5000, value=200, step=10, label="Chunk Size (for SimpleRAG)"
)
ingest_button = gr.Button("Ingest PDFs")
ingest_output = gr.Markdown(
label="Ingestion Status :",
)
progress_table = gr.DataFrame(
label="Ingestion Progress", headers=["Technique", "Time Taken (s)"]
)
with gr.Tab("Retrieve and Query Data"):
query_input = gr.Textbox(label="Enter your query")
top_k_slider = gr.Slider(1, 10, value=3, step=1, label="Top K Results")
sequential_checkbox = gr.Checkbox(label="Sequential Retrieval", value=False)
retrieve_button = gr.Button("Retrieve")
query_button = gr.Button("Query")
retrieval_timing = gr.DataFrame(
label="Retrieval Timings", headers=["RAG Type", "Time (s)"]
)
with gr.Row():
with gr.Column():
with gr.Accordion("SimpleRAG", open=True):
simple_content = gr.Textbox(
label="SimpleRAG Content", lines=10, max_lines=10
)
simple_response = gr.Markdown(label="SimpleRAG Response")
with gr.Column():
with gr.Accordion("VisionRAG", open=True):
vision_gallery = gr.Gallery(label="VisionRAG Images")
vision_response = gr.Markdown(label="VisionRAG Response")
with gr.Row():
with gr.Column():
with gr.Accordion("ColpaliRAG", open=True):
colpali_gallery = gr.Gallery(label="ColpaliRAG Images")
colpali_response = gr.Markdown(label="ColpaliRAG Response")
with gr.Column():
with gr.Accordion("HybridColpaliRAG", open=True):
hybrid_gallery = gr.Gallery(label="HybridColpaliRAG Images")
hybrid_response = gr.Markdown(label="HybridColpaliRAG Response")
with gr.Tab("Settings"):
api_key_input = gr.Textbox(label="OpenAI API Key", type="password")
update_api_button = gr.Button("Update API Key")
api_update_status = gr.Textbox(label="API Update Status")
simple_table_input = gr.Textbox(
label="SimpleRAG Table Name", value="simpleDemo"
)
vision_table_input = gr.Textbox(
label="VisionRAG Table Name", value="visionDemo"
)
colpali_table_input = gr.Textbox(
label="ColpaliRAG Table Name", value="colpaliDemo"
)
hybrid_table_input = gr.Textbox(
label="HybridColpaliRAG Table Name", value="hybridDemo"
)
update_table_button = gr.Button("Update Table Names")
table_update_status = gr.Textbox(label="Table Update Status")
retrieved_results = gr.State({})
def update_retrieval_results(query, top_k, sequential):
results, timings = retrieve_data(query, top_k, sequential)
timing_df = pd.DataFrame(
list(timings.items()), columns=["RAG Type", "Time (s)"]
)
return (
results["SimpleRAG"],
results["VisionRAG"],
results["ColpaliRAG"],
results["HybridColpaliRAG"],
timing_df,
results,
)
retrieve_button.click(
update_retrieval_results,
inputs=[query_input, top_k_slider, sequential_checkbox],
outputs=[
simple_content,
vision_gallery,
colpali_gallery,
hybrid_gallery,
retrieval_timing,
retrieved_results,
],
)
# def update_query_results(query, retrieved_results):
# results = query_data(query, retrieved_results)
# return (
# results["SimpleRAG"]["response"],
# results["VisionRAG"]["response"],
# results["ColpaliRAG"]["response"],
# results["HybridColpaliRAG"]["response"],
# )
# query_button.click(
# update_query_results,
# inputs=[query_input, retrieved_results],
# outputs=[
# simple_response,
# vision_response,
# colpali_response,
# hybrid_response,
# ],
# )
ingest_button.click(
ingest_data,
inputs=[pdf_input, use_ocr, chunk_size],
outputs=[ingest_output, progress_table],
)
update_api_button.click(
update_api_key, inputs=[api_key_input], outputs=api_update_status
)
update_table_button.click(
change_table,
inputs=[
simple_table_input,
vision_table_input,
colpali_table_input,
hybrid_table_input,
],
outputs=table_update_status,
)
return demo
# Parse command-line arguments
def parse_args():
parser = argparse.ArgumentParser(description="VisionRAG Gradio App")
parser.add_argument(
"--share", action="store_true", help="Enable Gradio share feature"
)
return parser.parse_args()
# Launch the app
if __name__ == "__main__":
args = parse_args()
app = gradio_interface()
app.launch(share=args.share)