File size: 8,972 Bytes
072b5ae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
import torch
import torch.nn as nn
import torch.nn.functional as F
import gradio as gr
import numpy as np
from PIL import Image
import torchvision.transforms as tfs
import os

def default_conv(in_channels, out_channels, kernel_size, bias=True):
    return nn.Conv2d(in_channels, out_channels, kernel_size, padding=(kernel_size // 2), bias=bias)

class PALayer(nn.Module):
    def __init__(self, channel):
        super(PALayer, self).__init__()
        self.pa = nn.Sequential(
            nn.Conv2d(channel, channel // 8, 1, bias=True),
            nn.ReLU(inplace=True),
            nn.Conv2d(channel // 8, 1, 1, bias=True),
            nn.Sigmoid()
        )

    def forward(self, x):
        y = self.pa(x)
        return x * y

class CALayer(nn.Module):
    def __init__(self, channel):
        super(CALayer, self).__init__()
        self.avg_pool = nn.AdaptiveAvgPool2d(1)
        self.ca = nn.Sequential(
            nn.Conv2d(channel, channel // 8, 1, bias=True),
            nn.ReLU(inplace=True),
            nn.Conv2d(channel // 8, channel, 1, bias=True),
            nn.Sigmoid()
        )

    def forward(self, x):
        y = self.avg_pool(x)
        y = self.ca(y)
        return x * y

class Block(nn.Module):
    def __init__(self, conv, dim, kernel_size):
        super(Block, self).__init__()
        self.conv1 = conv(dim, dim, kernel_size, bias=True)
        self.act1 = nn.ReLU(inplace=True)
        self.conv2 = conv(dim, dim, kernel_size, bias=True)
        self.calayer = CALayer(dim)
        self.palayer = PALayer(dim)

    def forward(self, x):
        res = self.act1(self.conv1(x))
        res = res + x
        res = self.conv2(res)
        res = self.calayer(res)
        res = self.palayer(res)
        res += x
        return res

class Group(nn.Module):
    def __init__(self, conv, dim, kernel_size, blocks):
        super(Group, self).__init__()
        modules = [Block(conv, dim, kernel_size) for _ in range(blocks)]
        modules.append(conv(dim, dim, kernel_size))
        self.gp = nn.Sequential(*modules)

    def forward(self, x):
        res = self.gp(x)
        res += x
        return res

class FFA(nn.Module):
    def __init__(self, gps, blocks, conv=default_conv):
        super(FFA, self).__init__()
        self.gps = gps
        self.dim = 64
        kernel_size = 3

        pre_process = [conv(3, self.dim, kernel_size)]
        assert self.gps == 3
        self.g1 = Group(conv, self.dim, kernel_size, blocks=blocks)
        self.g2 = Group(conv, self.dim, kernel_size, blocks=blocks)
        self.g3 = Group(conv, self.dim, kernel_size, blocks=blocks)
        self.ca = nn.Sequential(
            nn.AdaptiveAvgPool2d(1),
            nn.Conv2d(self.dim * self.gps, self.dim // 16, 1, bias=True),
            nn.ReLU(inplace=True),
            nn.Conv2d(self.dim // 16, self.dim * self.gps, 1, bias=True),
            nn.Sigmoid()
        )
        self.palayer = PALayer(self.dim)

        post_process = [
            conv(self.dim, self.dim, kernel_size),
            conv(self.dim, 3, kernel_size)
        ]

        self.pre = nn.Sequential(*pre_process)
        self.post = nn.Sequential(*post_process)

    def forward(self, x1):
        x = self.pre(x1)
        res1 = self.g1(x)
        res2 = self.g2(res1)
        res3 = self.g3(res2)
        w = self.ca(torch.cat([res1, res2, res3], dim=1))
        w = w.view(-1, self.gps, self.dim)[:, :, :, None, None]
        out = w[:, 0, :, :, :] * res1 + w[:, 1, :, :, :] * res2 + w[:, 2, :, :, :] * res3
        out = self.palayer(out)
        x = self.post(out)
        return x + x1

MODEL_PATH = 'tti.pk'
gps = 3
blocks = 19
device = 'cuda' if torch.cuda.is_available() else 'cpu'

net = FFA(gps=gps, blocks=blocks).to(device)
net = torch.nn.DataParallel(net)

if not os.path.exists(MODEL_PATH):
    raise FileNotFoundError(f"Model checkpoint not found at {MODEL_PATH}")

try:

    torch.serialization.add_safe_globals([np.core.multiarray.scalar])
    checkpoint = torch.load(MODEL_PATH, map_location=device, weights_only=True)
except:

    print("Warning: Loading checkpoint with weights_only=False. Ensure the checkpoint is from a trusted source.")
    checkpoint = torch.load(MODEL_PATH, map_location=device, weights_only=False)
net.load_state_dict(checkpoint['model'])
net.eval()

print(f"Model loaded successfully on {device}")

def dehaze_image(image):
    """
    Process a hazy image and return the dehazed result.

    Args:
        image: PIL Image or numpy array

    Returns:
        PIL Image: Dehazed image
    """
    try:

        if isinstance(image, np.ndarray):
            image = Image.fromarray(image)


        haze_img = image.convert("RGB")


        transform = tfs.Compose([
            tfs.ToTensor(),
            tfs.Normalize(mean=[0.64, 0.6, 0.58], std=[0.14, 0.15, 0.152])
        ])

        haze_tensor = transform(haze_img).unsqueeze(0).to(device)


        with torch.no_grad():
            pred = net(haze_tensor)


        pred_clamped = pred.clamp(0, 1).cpu()
        pred_numpy = pred_clamped.squeeze(0).permute(1, 2, 0).numpy()
        pred_numpy = (pred_numpy * 255).astype(np.uint8)

        return Image.fromarray(pred_numpy)

    except Exception as e:
        print(f"Error processing image: {str(e)}")
        return None

SAMPLE_IMAGES = [
    "./img/s2.png",
    "./img/s4.png"
]

def load_sample_image(sample_path):
    """Load and return a sample image"""
    try:
        if os.path.exists(sample_path):
            return Image.open(sample_path)
        else:
            print(f"Sample image not found: {sample_path}")
            return None
    except Exception as e:
        print(f"Error loading sample image {sample_path}: {e}")
        return None

def create_interface():
    with gr.Blocks(title="Image Dehazing App", theme=gr.themes.Soft()) as demo:
        gr.Markdown("# 🌫️ Image Dehazing with FFA-Net")
        gr.Markdown("Upload a hazy image to remove fog, haze, and improve visibility!")

        with gr.Row():
            with gr.Column():
                input_image = gr.Image(
                    label="Upload Hazy Image",
                    type="pil",
                    height=400
                )


                gr.Markdown("### Try Sample Images")
                with gr.Row():
                    sample1_btn = gr.Image(
                        value=load_sample_image(SAMPLE_IMAGES[0]) if len(SAMPLE_IMAGES) > 0 else None,
                        label="Sample 1",
                        interactive=True,
                        width=150,
                        height=150,
                        container=True,
                        show_download_button=False
                    )
                    sample2_btn = gr.Image(
                        value=load_sample_image(SAMPLE_IMAGES[1]) if len(SAMPLE_IMAGES) > 1 else None,
                        label="Sample 2",
                        interactive=True,
                        width=150,
                        height=150,
                        container=True,
                        show_download_button=False
                    )

                process_btn = gr.Button(
                    "Remove Haze ✨",
                    variant="primary",
                    size="lg"
                )

            with gr.Column():
                output_image = gr.Image(
                    label="Dehazed Result",
                    type="pil",
                    height=400
                )


        def use_sample1():
            return load_sample_image(SAMPLE_IMAGES[0]) if len(SAMPLE_IMAGES) > 0 else None

        def use_sample2():
            return load_sample_image(SAMPLE_IMAGES[1]) if len(SAMPLE_IMAGES) > 1 else None

        sample1_btn.select(
            fn=use_sample1,
            outputs=input_image
        )

        sample2_btn.select(
            fn=use_sample2,
            outputs=input_image
        )


        process_btn.click(
            fn=dehaze_image,
            inputs=input_image,
            outputs=output_image,
            api_name="dehaze"
        )


        input_image.change(
            fn=dehaze_image,
            inputs=input_image,
            outputs=output_image
        )

        gr.Markdown("""
        ### About
        This app uses the FFA-Net (Feature Fusion Attention Network) for single image dehazing.
        The model removes atmospheric haze and fog to restore clear, vibrant images.

        **Tips for best results:**
        - Use good quality images with visible haze or fog
        - Model works best on indoor images
        **Made by  <a href="https://www.linkedin.com/in/aditsg26/">Aditya Singh</a> and <a href="https://www.linkedin.com/in/ramandeep-singh-makkar/">Ramandeep Singh Makkar</a>**
        """)

    return demo

if __name__ == "__main__":

    demo = create_interface()


    demo.launch(
        server_name="0.0.0.0",
        server_port=7860,
        share=False,
        debug=False
    )