import altair as alt import numpy as np import pandas as pd import streamlit as st import streamlit as st import cv2 import torch import numpy as np import os import tempfile import time from transformers import AutoImageProcessor, AutoModelForImageClassification from collections import deque import tensorflow as tf from tensorflow.keras.preprocessing import image from tensorflow.keras.models import load_model import urllib.request import shutil class CNNDeepfakeDetector: def __init__(self): st.info("Initializing CNN Deepfake Detector... This may take a moment.") # Initialize CNN model for deepfake detection with st.spinner("Loading CNN deepfake detection model..."): try: self.model = load_model('cnn_model.h5') st.success("CNN model loaded successfully!") except Exception as e: st.error(f"Error loading CNN model: {e}") st.warning("Please make sure 'cnn_model.h5' is in the current directory.") self.model = None def classify_image(self, face_img): """Classify a face image as real or fake using CNN model""" try: if self.model is None: return "Model Not Loaded", 0.0 # Resize to target size img_resized = cv2.resize(face_img, (128, 128)) # Preprocess the image img_array = img_resized / 255.0 img_array = np.expand_dims(img_array, axis=0) # Make prediction prediction = self.model.predict(img_array) confidence = float(prediction[0][0]) # In this model, <0.5 means Real, >=0.5 means Fake label = 'Real' if confidence < 0.5 else 'Fake' # Adjust confidence to be relative to the prediction if label == 'Fake': confidence = confidence # Already between 0.5-1.0 else: confidence = 1.0 - confidence # Convert 0.0-0.5 to 0.5-1.0 return label, confidence except Exception as e: st.error(f"Error in CNN classification: {e}") return "Error", 0.0 class DeepfakeDetector: def __init__(self): st.info("Initializing Deepfake Detector... This may take a moment.") # Initialize ViT model for deepfake detection with st.spinner("Loading deepfake detection model..."): self.image_processor = AutoImageProcessor.from_pretrained( 'Adieee5/deepfake-detection-f3net-cross') self.model = AutoModelForImageClassification.from_pretrained( 'Adieee5/deepfake-detection-f3net-cross') # Face detection model setup with st.spinner("Loading face detection model..."): model_file = "deploy.prototxt" weights_file = "res10_300x300_ssd_iter_140000.caffemodel" self.use_dnn = False if os.path.exists(model_file) and os.path.exists(weights_file): try: self.face_net = cv2.dnn.readNetFromCaffe(model_file, weights_file) self.use_dnn = True st.success("Using DNN face detector (better for close-up faces)") except Exception as e: st.warning(f"Could not load DNN model: {e}") self.use_dnn = False if not self.use_dnn: # Fallback to Haar cascade cascade_path = cv2.data.haarcascades + 'haarcascade_frontalface_default.xml' if os.path.exists(cascade_path): self.face_cascade = cv2.CascadeClassifier(cascade_path) st.warning("Using Haar cascade face detector as fallback") else: st.error(f"Cascade file not found: {cascade_path}") # Initialize CNN model self.cnn_detector = CNNDeepfakeDetector() # Face tracking/smoothing parameters self.face_history = {} # Store face tracking data self.face_history_max_size = 10 # Store history for last 10 frames self.face_ttl = 5 # Number of frames a face can be missing before removing self.next_face_id = 0 # For assigning unique IDs to tracked faces # Result smoothing self.result_buffer_size = 5 # Number of classifications to average # Performance metrics self.processing_times = deque(maxlen=30) st.success("Models loaded successfully!") def detect_faces_haar(self, frame): """Detect faces using Haar cascade""" gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) faces = self.face_cascade.detectMultiScale( gray, scaleFactor=1.1, minNeighbors=5, minSize=(30, 30)) # Convert to list of (x,y,w,h,confidence) format for consistency return [(x, y, w, h, 0.8) for (x, y, w, h) in faces] def classify_frame(self, face_img, model_type="vit"): """Classify a face image as real or fake""" try: if model_type == "cnn": return self.cnn_detector.classify_image(face_img) # Default to ViT model # Resize image if too small h, w = face_img.shape[:2] if h < 224 or w < 224: scale = max(224/h, 224/w) face_img = cv2.resize(face_img, (int(w*scale), int(h*scale))) # Make sure we have valid image data if face_img.size == 0: return "Unknown", 0.0 # Process with ViT model inputs = self.image_processor(images=face_img, return_tensors="pt") outputs = self.model(**inputs) logits = outputs.logits # Get prediction and confidence probs = torch.nn.functional.softmax(logits, dim=1) pred = torch.argmax(logits, dim=1).item() # The model has two classes: 0=Fake, 1=Real label = 'Real' if pred == 1 else 'Fake' confidence = probs[0][pred].item() return label, confidence except Exception as e: st.error(f"Error in classification: {e}") return "Error", 0.0 def detect_faces_dnn(self, frame): """Detect faces using DNN method""" height, width = frame.shape[:2] blob = cv2.dnn.blobFromImage(cv2.resize(frame, (300, 300)), 1.0, (300, 300), (104.0, 177.0, 123.0)) self.face_net.setInput(blob) detections = self.face_net.forward() faces = [] for i in range(detections.shape[2]): confidence = detections[0, 0, i, 2] if confidence > 0.5: # Filter out weak detections box = detections[0, 0, i, 3:7] * np.array([width, height, width, height]) (x1, y1, x2, y2) = box.astype("int") # Ensure box is within frame boundaries x1, y1 = max(0, x1), max(0, y1) x2, y2 = min(width, x2), min(height, y2) w, h = x2 - x1, y2 - y1 if w > 0 and h > 0: # Valid face area faces.append((x1, y1, w, h, confidence)) return faces def calculate_iou(self, box1, box2): """Calculate Intersection over Union for two boxes""" # Convert boxes from (x, y, w, h) to (x1, y1, x2, y2) box1_x1, box1_y1, box1_w, box1_h = box1 box2_x1, box2_y1, box2_w, box2_h = box2 box1_x2, box1_y2 = box1_x1 + box1_w, box1_y1 + box1_h box2_x2, box2_y2 = box2_x1 + box2_w, box2_y1 + box2_h # Calculate area of intersection rectangle x_left = max(box1_x1, box2_x1) y_top = max(box1_y1, box2_y1) x_right = min(box1_x2, box2_x2) y_bottom = min(box1_y2, box2_y2) if x_right < x_left or y_bottom < y_top: return 0.0 intersection_area = (x_right - x_left) * (y_bottom - y_top) # Calculate area of both boxes box1_area = box1_w * box1_h box2_area = box2_w * box2_h # Calculate IoU iou = intersection_area / float(box1_area + box2_area - intersection_area) return iou def track_faces(self, faces): matched_faces = [] unmatched_detections = list(range(len(faces))) if not self.face_history: for face in faces: face_id = self.next_face_id self.next_face_id += 1 self.face_history[face_id] = { 'positions': deque([face[:4]], maxlen=self.face_history_max_size), 'ttl': self.face_ttl, 'label': None, 'confidence': 0.0, 'result_history': deque(maxlen=self.result_buffer_size) } matched_faces.append((face_id, face)) return matched_faces for face_id in list(self.face_history.keys()): last_pos = self.face_history[face_id]['positions'][-1] best_match = -1 best_iou = 0.3 for i in unmatched_detections: iou = self.calculate_iou(last_pos, faces[i][:4]) if iou > best_iou: best_iou = iou best_match = i if best_match != -1: matched_face = faces[best_match] self.face_history[face_id]['positions'].append(matched_face[:4]) self.face_history[face_id]['ttl'] = self.face_ttl matched_faces.append((face_id, matched_face)) unmatched_detections.remove(best_match) else: self.face_history[face_id]['ttl'] -= 1 if self.face_history[face_id]['ttl'] <= 0: del self.face_history[face_id] else: predicted_face = (*last_pos, 0.5) matched_faces.append((face_id, predicted_face)) for i in unmatched_detections: face_id = self.next_face_id self.next_face_id += 1 self.face_history[face_id] = { 'positions': deque([faces[i][:4]], maxlen=self.face_history_max_size), 'ttl': self.face_ttl, 'label': None, 'confidence': 0.0, 'result_history': deque(maxlen=self.result_buffer_size) } matched_faces.append((face_id, faces[i])) return matched_faces def smooth_face_position(self, face_id): """Calculate smoothed position for a tracked face""" positions = self.face_history[face_id]['positions'] if len(positions) == 1: return positions[0] # Weight recent positions more heavily total_weight = 0 x, y, w, h = 0, 0, 0, 0 for i, pos in enumerate(positions): # Exponential weighting - newer positions have more influence weight = 2 ** i # Positions are stored newest to oldest total_weight += weight x += pos[0] * weight y += pos[1] * weight w += pos[2] * weight h += pos[3] * weight # Calculate weighted average x = int(x / total_weight) y = int(y / total_weight) w = int(w / total_weight) h = int(h / total_weight) return (x, y, w, h) def update_face_classification(self, face_id, label, confidence): """Update classification history for a face""" self.face_history[face_id]['result_history'].append((label, confidence)) # Calculate the smoothed result if not self.face_history[face_id]['result_history']: return label, confidence real_votes = 0 fake_votes = 0 total_confidence = 0.0 for result_label, result_conf in self.face_history[face_id]['result_history']: if result_label == "Real": real_votes += 1 total_confidence += result_conf elif result_label == "Fake": fake_votes += 1 total_confidence += result_conf # Determine majority vote if real_votes >= fake_votes: smoothed_label = "Real" label_confidence = real_votes / len(self.face_history[face_id]['result_history']) else: smoothed_label = "Fake" label_confidence = fake_votes / len(self.face_history[face_id]['result_history']) # Average confidence weighted by vote consistency avg_confidence = (total_confidence / len(self.face_history[face_id]['result_history'])) * label_confidence # Store the smoothed result self.face_history[face_id]['label'] = smoothed_label self.face_history[face_id]['confidence'] = avg_confidence return smoothed_label, avg_confidence def process_video(self, video_path, stframe, status_text, progress_bar, detector_type="dnn", model_type="vit"): """Process video with Streamlit output""" use_dnn_current = detector_type == "dnn" and self.use_dnn cap = cv2.VideoCapture(video_path) if not cap.isOpened(): st.error(f"Error: Cannot open video source") return # Get video properties frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)) frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) fps = cap.get(cv2.CAP_PROP_FPS) total_frames = 250 if video_path != 0 else 0 # Display video info if video_path != 0: # If not webcam status_text.text(f"Video Info: {frame_width}x{frame_height}, {fps:.1f} FPS, {total_frames} frames") else: status_text.text(f"Webcam: {frame_width}x{frame_height}") # Reset tracking data for new video self.face_history = {} self.next_face_id = 0 self.processing_times = deque(maxlen=30) frame_count = 0 process_every_n_frames = 2 # Process every 2nd frame for better performance # For face detection stats face_stats = {"Real": 0, "Fake": 0, "Unknown": 0} # Main processing loop while True: start_time = time.time() ret, frame = cap.read() if not ret: status_text.text("End of video reached") break frame_count += 1 if frame_count == 250: st.success("Video Processed Successfully!") break if video_path != 0: # If not webcam, update progress progress = min(float(frame_count) / float(max(total_frames, 1)), 1.0) progress_bar.progress(progress) process_frame = (frame_count % process_every_n_frames == 0) # Store original frame for face extraction frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) if process_frame: # Detect faces using the appropriate method if use_dnn_current: faces = self.detect_faces_dnn(frame) else: faces = self.detect_faces_haar(frame) # Track faces across frames tracked_faces = self.track_faces(faces) # Process each tracked face for face_id, (x, y, w, h, face_confidence) in tracked_faces: if face_id not in self.face_history: continue sx, sy, sw, sh = self.smooth_face_position(face_id) # Draw rectangle around face with smoothed coordinates cv2.rectangle(frame, (sx, sy), (sx+sw, sy+sh), (0, 255, 255), 2) # Only process classification for real detections (not predicted) if w > 20 and h > 20 and face_id in self.face_history: try: # Extract face using smoothed coordinates for better consistency face = frame_rgb[sy:sy+sh, sx:sx+sw] # Skip processing if face is too small after smoothing if face.size == 0 or face.shape[0] < 20 or face.shape[1] < 20: continue # Process only every N frames or if this is a new face if frame_count % process_every_n_frames == 0 or \ len(self.face_history[face_id]['result_history']) == 0: # Classify the face using the selected model label, confidence = self.classify_frame(face, model_type) # Update and smooth results label, confidence = self.update_face_classification(face_id, label, confidence) else: # Use last stored result label = self.face_history[face_id]['label'] or "Unknown" confidence = self.face_history[face_id]['confidence'] # Update stats if label in face_stats: face_stats[label] += 1 # Display results result_text = f"{label}: {confidence:.2f}" text_color = (0, 255, 0) if label == "Real" else (0, 0, 255) # Add text background for better visibility cv2.rectangle(frame, (sx, sy+sh), (sx+len(result_text)*11, sy+sh+25), (0, 0, 0), -1) cv2.putText(frame, result_text, (sx, sy+sh+20), cv2.FONT_HERSHEY_SIMPLEX, 0.7, text_color, 2) # Draw face ID cv2.putText(frame, f"ID:{face_id}", (sx, sy-5), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 0), 1) except Exception as e: st.error(f"Error processing face: {e}") # Measure processing time process_time = time.time() - start_time self.processing_times.append(process_time) avg_time = sum(self.processing_times) / len(self.processing_times) effective_fps = 1.0 / avg_time if avg_time > 0 else 0 # Add frame counter and progress if video_path != 0: # If not webcam progress_percent = (frame_count / total_frames) * 100 if total_frames > 0 else 0 cv2.putText(frame, f"Frame: {frame_count}/{total_frames} ({progress_percent:.1f}%)", (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (255, 255, 255), 2) else: cv2.putText(frame, f"Frame: {frame_count}", (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (255, 255, 255), 2) # Show detector info and performance detector_name = "DNN" if use_dnn_current else "Haar Cascade" model_name = "ViT" if model_type == "vit" else "CNN" cv2.putText(frame, f"Detector: {detector_name} | Model: {model_name} | FPS: {effective_fps:.1f}", (10, 60), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (255, 255, 255), 2) # Show tracking info cv2.putText(frame, f"Tracked faces: {len(self.face_history)}", (10, 90), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (255, 255, 255), 2) # Display the frame in Streamlit stframe.image(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB), channels="RGB") # Update stats status_text.text(f"Real: {face_stats['Real']} | Fake: {face_stats['Fake']} | FPS: {effective_fps:.1f}") # Check if stop button is pressed if st.session_state.get('stop_button', False): break # Clean up cap.release() return face_stats # Function to ensure sample video exists def ensure_sample_video(): sample_dir = "sample_videos" sample_path = os.path.join(sample_dir, "Sample.mp4") # Create directory if it doesn't exist if not os.path.exists(sample_dir): os.makedirs(sample_dir) # If sample video doesn't exist, download it if not os.path.exists(sample_path): try: with st.spinner("Downloading sample video..."): # URL to a public domain sample video that contains faces sample_url = "https://storage.googleapis.com/deepfake-demo/sample_deepfake.mp4" # Download the file with urllib.request.urlopen(sample_url) as response, open(sample_path, 'wb') as out_file: shutil.copyfileobj(response, out_file) st.success("Sample video downloaded successfully!") except Exception as e: st.error(f"Failed to download sample video: {e}") return None return sample_path def main(): st.set_page_config(page_title="Deepfake Detector", layout="wide") # App title and description st.title("Deepfake Detection App") st.markdown(""" This app uses computer vision and deep learning to detect deepfake videos. Upload a video or use your webcam to detect if faces are real or manipulated. """) # Initialize session state for the detector and variables if 'detector' not in st.session_state: st.session_state.detector = None if 'stop_button' not in st.session_state: st.session_state.stop_button = False if 'use_sample' not in st.session_state: st.session_state.use_sample = False if 'sample_path' not in st.session_state: st.session_state.sample_path = None # Initialize the detector if st.session_state.detector is None: st.session_state.detector = DeepfakeDetector() # Create sidebar for options st.sidebar.title("Options") input_option = st.sidebar.radio( "Select Input Source", ["Upload Video", "Use Webcam", "Try Sample Video"] ) detector_type = st.sidebar.selectbox( "Face Detector", ["DNN (better for close-ups)", "Haar Cascade (faster)"], index=0 if st.session_state.detector.use_dnn else 1 ) detector_option = "dnn" if "DNN" in detector_type else "haar" # Model selection option model_type = st.sidebar.selectbox( "Deepfake Detection Model", ["Vision Transformer (ViT)", "F3 Net Model"], index=0 ) model_option = "vit" if "Vision" in model_type else "cnn" # Main content area col1, col2 = st.columns([3, 1]) with col1: # Video display area video_placeholder = st.empty() with col2: # Status and controls status_text = st.empty() progress_bar = st.empty() # Results section st.subheader("Results") results_area = st.empty() # Stop button if st.button("Stop Processing"): st.session_state.stop_button = True # Process based on selected option if input_option == "Upload Video": uploaded_file = st.sidebar.file_uploader("Choose a video file", type=["mp4", "avi", "mov", "mkv"]) if uploaded_file is not None: st.session_state.stop_button = False # Save uploaded file to temp file tfile = tempfile.NamedTemporaryFile(delete=False) tfile.write(uploaded_file.read()) video_path = tfile.name # Process the video face_stats = st.session_state.detector.process_video( video_path, video_placeholder, status_text, progress_bar, detector_option, model_option ) # Display results results_df = { "Category": ["Real Faces", "Fake Faces"], "Count": [face_stats["Real"], face_stats["Fake"]] } results_area.dataframe(results_df) # Clean up temp file os.unlink(video_path) elif input_option == "Use Webcam": # Reset stop button st.session_state.stop_button = False if st.sidebar.button("Start Webcam"): # Process webcam feed face_stats = st.session_state.detector.process_video( 0, # 0 is the default camera video_placeholder, status_text, progress_bar, detector_option, model_option ) # Display results after stopping results_df = { "Category": ["Real Faces", "Fake Faces"], "Count": [face_stats["Real"], face_stats["Fake"]] } results_area.dataframe(results_df) elif input_option == "Try Sample Video": # Reset stop button st.session_state.stop_button = False # Get or download the sample video sample_path = ensure_sample_video() if sample_path: if st.sidebar.button("Process Sample Video"): # Process the sample video face_stats = st.session_state.detector.process_video( sample_path, video_placeholder, status_text, progress_bar, detector_option, model_option ) # Display results results_df = { "Category": ["Real Faces", "Fake Faces"], "Count": [face_stats["Real"], face_stats["Fake"]] } results_area.dataframe(results_df) else: st.sidebar.error("Failed to load sample video. Please try uploading your own video instead.") if __name__ == "__main__": main()