Create app.py
Browse filesA Sentimental analysis that gives positive, negative and neutral response
app.py
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import pipeline
|
2 |
+
|
3 |
+
import gradio as gr
|
4 |
+
|
5 |
+
|
6 |
+
|
7 |
+
# Load sentiment analysis pipeline
|
8 |
+
|
9 |
+
# classifier_pipeline = pipeline("text-classification", model="tabularisai/multilingual-sentiment-analysis")
|
10 |
+
|
11 |
+
classifier_pipeline = ("sentiment-analysis")
|
12 |
+
|
13 |
+
|
14 |
+
|
15 |
+
# Define classification function
|
16 |
+
|
17 |
+
def classify_text(text):
|
18 |
+
|
19 |
+
output = classifier_pipeline(text)
|
20 |
+
|
21 |
+
return output[0] # Extract the first result from the list
|
22 |
+
|
23 |
+
|
24 |
+
|
25 |
+
# Define Gradio interface
|
26 |
+
|
27 |
+
interface = gr.Interface(
|
28 |
+
|
29 |
+
fn=classify_text,
|
30 |
+
|
31 |
+
inputs=gr.Textbox(label="Enter sentence here"),
|
32 |
+
|
33 |
+
outputs=gr.Label(),
|
34 |
+
|
35 |
+
examples=["I am hungry", "I love this product!", "This is the worst experience ever."]
|
36 |
+
|
37 |
+
)
|
38 |
+
|
39 |
+
|
40 |
+
|
41 |
+
# Launch the interface
|
42 |
+
|
43 |
+
interface.launch()
|