File size: 6,590 Bytes
0c73150
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
import streamlit as st
from .sidebar import render_sidebar
from requests_toolkit import ArxivQuery,IEEEQuery,PaperWithCodeQuery
from trendflow.lrt.clustering.clusters import SingleCluster
from trendflow.lrt.clustering.config import Configuration
from trendflow.lrt import ArticleList, LiteratureResearchTool
from trendflow.lrt_instance import *
from .charts import build_bar_charts

def home():
    # sidebar content
    platforms, number_papers, start_year, end_year, hyperparams = render_sidebar()

    # body head
    with st.form("my_form", clear_on_submit=False):
        st.markdown('''# 👋 Hi, enter your query here :)''')
        query_input = st.text_input(
            'Enter your query:',
            placeholder='''e.g. "Machine learning"''',
            # label_visibility='collapsed',
            value=''
        )

        show_preview = st.checkbox('show paper preview')

        # Every form must have a submit button.
        submitted = st.form_submit_button("Search")

    if submitted:
        # body
        render_body(platforms, number_papers, 5, query_input,
                    show_preview, start_year, end_year,
                    hyperparams,
                    hyperparams['standardization'])


def __preview__(platforms, num_papers, num_papers_preview, query_input, start_year, end_year):
    with st.spinner('Searching...'):
        paperInGeneral = st.empty()  # paper的大概
        paperInGeneral_md = '''# 0 Query Results Preview
We have found following papers for you! (displaying 5 papers for each literature platforms)
'''
        if 'IEEE' in platforms:
            paperInGeneral_md += '''## IEEE
| ID| Paper Title | Publication Year |
| -------- | -------- | -------- |
'''
            IEEEQuery.__setup_api_key__('vpd9yy325enruv27zj2d353e')
            ieee = IEEEQuery.query(query_input, start_year, end_year, num_papers)
            num_papers_preview = min(len(ieee), num_papers_preview)
            for i in range(num_papers_preview):
                title = str(ieee[i]['title']).replace('\n', ' ')
                publication_year = str(ieee[i]['publication_year']).replace('\n', ' ')
                paperInGeneral_md += f'''|{i + 1}|{title}|{publication_year}|\n'''
        if 'Arxiv' in platforms:
            paperInGeneral_md += '''
## Arxiv
| ID| Paper Title | Publication Year |
| -------- | -------- | -------- |
'''
            arxiv = ArxivQuery.query(query_input, max_results=num_papers)
            num_papers_preview = min(len(arxiv), num_papers_preview)
            for i in range(num_papers_preview):
                title = str(arxiv[i]['title']).replace('\n', ' ')
                publication_year = str(arxiv[i]['published']).replace('\n', ' ')
                paperInGeneral_md += f'''|{i + 1}|{title}|{publication_year}|\n'''
        if 'Paper with Code' in platforms:
            paperInGeneral_md += '''
## Paper with Code
| ID| Paper Title | Publication Year |
| -------- | -------- | -------- |
'''
            pwc = PaperWithCodeQuery.query(query_input, items_per_page=num_papers)
            num_papers_preview = min(len(pwc), num_papers_preview)
            for i in range(num_papers_preview):
                title = str(pwc[i]['title']).replace('\n', ' ')
                publication_year = str(pwc[i]['published']).replace('\n', ' ')
                paperInGeneral_md += f'''|{i + 1}|{title}|{publication_year}|\n'''

        paperInGeneral.markdown(paperInGeneral_md)

def render_body(platforms, num_papers, num_papers_preview, query_input, show_preview: bool, start_year, end_year,
                hyperparams: dict, standardization=False):

    tmp = st.empty()
    if query_input != '':
        tmp.markdown(f'You entered query: `{query_input}`')

        # preview
        if show_preview:
            __preview__(platforms, num_papers, num_papers_preview, query_input, start_year, end_year)

        with st.spinner("Clustering and generating..."):
            # lrt results
            ## baseline
            if hyperparams['dimension_reduction'] == 'none' \
                    and hyperparams['model_cpt'] == 'keyphrase-transformer' \
                    and hyperparams['cluster_model'] == 'kmeans-euclidean':
                model = baseline_lrt
            else:
                config = Configuration(
                    plm='''all-mpnet-base-v2''',
                    dimension_reduction=hyperparams['dimension_reduction'],
                    clustering=hyperparams['cluster_model'],
                    keywords_extraction=hyperparams['model_cpt']
                )
                model = LiteratureResearchTool(config)

            generator = model.yield_(query_input, num_papers, start_year, end_year, max_k=hyperparams['max_k'],
                              platforms=platforms, standardization=standardization)
            for i, plat in enumerate(platforms):
                clusters, articles = next(generator)
                st.markdown(f'''# {i + 1} {plat} Results''')
                clusters.sort()

                st.markdown(f'''## {i + 1}.1 Clusters Overview''')
                st.markdown(f'''In this section we show the overview of the clusters, more specifically,''')
                st.markdown(f'''\n- the number of papers in each cluster\n- the number of keyphrases of each cluster''')
                st.bokeh_chart(build_bar_charts(
                    x_range=[f'Cluster {i + 1}' for i in range(len(clusters))],
                    y_names=['Number of Papers', 'Number of Keyphrases'],
                    y_data=[[len(c) for c in clusters], [len(c.get_keyphrases()) for c in clusters]]
                ))

                st.markdown(f'''## {i + 1}.2 Cluster Details''')
                st.markdown(f'''In this section we show the details of each cluster, including''')
                st.markdown(f'''\n- the article information in the cluster\n- the keyphrases of the cluster''')
                for j, cluster in enumerate(clusters):
                    assert isinstance(cluster, SingleCluster)  # TODO: remove this line
                    ids = cluster.get_elements()
                    articles_in_cluster = ArticleList([articles[id] for id in ids])
                    st.markdown(f'''**Cluster {j + 1}**''')
                    st.dataframe(articles_in_cluster.to_dataframe())
                    st.markdown(f'''The top 5 keyphrases of this cluster are:''')
                    md = ''
                    for keyphrase in cluster.top_5_keyphrases:
                        md += f'''- `{keyphrase}`\n'''
                    st.markdown(md)