File size: 4,238 Bytes
9420338
 
469542a
b2495e2
 
 
 
247c4e3
9420338
68c1b6b
 
 
 
9420338
 
68c1b6b
 
9420338
 
 
68c1b6b
 
 
 
 
 
 
 
 
9420338
 
 
 
68c1b6b
 
 
 
 
 
247c4e3
68c1b6b
9420338
 
 
 
68c1b6b
 
 
 
 
 
 
 
9420338
469542a
68c1b6b
 
 
 
469542a
 
68c1b6b
 
469542a
 
 
b2495e2
 
469542a
436e5a1
b2495e2
 
 
 
 
247c4e3
 
b2495e2
 
 
 
 
 
 
 
247c4e3
 
 
 
 
 
b2495e2
469542a
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
import streamlit as st
from api_ import ArxivQuery, IEEEQuery, PaperWithCodeQuery
from lrt_instance import *
from pyecharts.charts import Bar
from pyecharts import options as opts
import streamlit.components.v1 as st_render
from .utils import generate_html_pyecharts
from .charts import build_bar_charts

def __preview__(platforms, num_papers, num_papers_preview, query_input,start_year,end_year):
    with st.spinner('Searching...'):
        paperInGeneral = st.empty()  # paper的大概
        paperInGeneral_md = '''# Query Results Preview
We have found following papers for you! (displaying 5 papers for each literature platforms)
'''
        if 'IEEE' in platforms:
            paperInGeneral_md += '''## IEEE
| ID| Paper Title | Publication Year |
| -------- | -------- | -------- |
'''
            IEEEQuery.__setup_api_key__('vpd9yy325enruv27zj2d353e')
            ieee = IEEEQuery.query(query_input,start_year,end_year,num_papers)
            num_papers_preview = min(len(ieee), num_papers_preview)
            for i in range(num_papers_preview):
                title = str(ieee[i]['title']).replace('\n', ' ')
                publication_year = str(ieee[i]['publication_year']).replace('\n', ' ')
                paperInGeneral_md += f'''|{i + 1}|{title}|{publication_year}|\n'''
        if 'Arxiv' in platforms:
            paperInGeneral_md += '''
## Arxiv
| ID| Paper Title | Publication Year |
| -------- | -------- | -------- |
'''
            arxiv = ArxivQuery.query(query_input, max_results=num_papers)
            num_papers_preview = min(len(arxiv), num_papers_preview)
            for i in range(num_papers_preview):
                title = str(arxiv[i]['title']).replace('\n', ' ')
                publication_year = str(arxiv[i]['published']).replace('\n', ' ')
                paperInGeneral_md += f'''|{i + 1}|{title}|{publication_year}|\n'''
        if 'Paper with Code' in platforms:
            paperInGeneral_md += '''
## Paper with Code
| ID| Paper Title | Publication Year |
| -------- | -------- | -------- |
'''
            pwc = PaperWithCodeQuery.query(query_input, items_per_page=num_papers)
            num_papers_preview = min(len(pwc), num_papers_preview)
            for i in range(num_papers_preview):
                title = str(pwc[i]['title']).replace('\n', ' ')
                publication_year = str(pwc[i]['published']).replace('\n', ' ')
                paperInGeneral_md += f'''|{i + 1}|{title}|{publication_year}|\n'''

        paperInGeneral.markdown(paperInGeneral_md)

def render_body(platforms, num_papers, num_papers_preview, query_input, show_preview:bool,start_year,end_year,k):

    tmp = st.empty()
    if query_input != '':
        tmp.markdown(f'You entered query: `{query_input}`')

        # preview
        if show_preview:
            __preview__(platforms,num_papers,num_papers_preview,query_input,start_year,end_year)


        # lrt results
        generator =  baseline_lrt(query_input,num_papers,start_year,end_year,platforms, best_k=k)
        for i,plat in enumerate(platforms):
            clusters, articles = next(generator)
            st.markdown(f'''# {plat} Results''')
            clusters.sort()

            st.markdown(f'''## Clusters Overview''')
            st.markdown(f'''Here we show the overview of the clusters, more specifically,''')
            st.markdown(f'''\n- the number of papers in each cluster\n- the number of keyphrases of each cluster''')
            '''
            plot using pyecharts
            bar = (
                Bar()
                .add_xaxis([f'Cluster {i + 1}' for i in range(len(clusters))])
                .add_yaxis("number of papers", [len(c) for c in clusters])
                .add_yaxis("number of keyphrases", [len(c.get_keyphrases()) for c in clusters])
            )
            html = generate_html_pyecharts(bar, 'tmp.html')
            st_render.html(html, height=500, width=1000)
            '''
            st.bokeh_chart(build_bar_charts(
                x_range=[f'Cluster {i + 1}' for i in range(len(clusters))],
                y_names= ['Number of Papers', 'Number of Keyphrases'],
                y_data=[[len(c) for c in clusters],[len(c.get_keyphrases()) for c in clusters]]
            ))