File size: 25,735 Bytes
fb6c2da
 
72d06c8
fb6c2da
 
23a4e8b
fb6c2da
72d06c8
 
 
 
 
 
 
 
fb6c2da
 
 
 
1cfab2b
fb6c2da
 
 
 
 
 
 
 
 
 
 
 
 
c097f91
fb6c2da
 
 
 
 
 
 
2aa90ca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fb6c2da
 
 
1cfab2b
fb6c2da
 
 
 
 
 
 
 
 
 
 
 
 
aa0bbd7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c097f91
fb6c2da
 
 
 
 
 
 
 
2aa90ca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e8e5f30
2aa90ca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a056b0b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2254a67
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a056b0b
 
 
 
 
 
 
 
 
6d93939
 
 
08102b2
6d93939
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fb6c2da
 
 
1cfab2b
fb6c2da
 
 
 
3996268
fb6c2da
 
 
 
 
 
 
c097f91
fb6c2da
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
import gradio as gr
import numpy as np
import psutil

def create_map():
    return np.zeros(shape=(512, 512), dtype=np.uint8)+255

def get_system_memory():
    memory = psutil.virtual_memory()
    memory_percent = memory.percent
    memory_used = memory.used / (1024.0 ** 3)
    memory_total = memory.total / (1024.0 ** 3)
    return {"percent": f"{memory_percent}%", "used": f"{memory_used:.3f}GB", "total": f"{memory_total:.3f}GB"}



def create_demo_keypose(process):
    with gr.Blocks() as demo:
        with gr.Row():
            gr.Markdown('## T2I-Adapter (Keypose)')
        with gr.Row():
            with gr.Column():
                input_img = gr.Image(source='upload', type="numpy")
                prompt = gr.Textbox(label="Prompt")
                neg_prompt = gr.Textbox(label="Negative Prompt",
                value='ugly, tiling, poorly drawn hands, poorly drawn feet, poorly drawn face, out of frame, extra limbs, disfigured, deformed, body out of frame, bad anatomy, watermark, signature, cut off, low contrast, underexposed, overexposed, bad art, beginner, amateur, distorted face')
                pos_prompt = gr.Textbox(label="Positive Prompt",
                value = 'crafted, elegant, meticulous, magnificent, maximum details, extremely hyper aesthetic, intricately detailed')
                with gr.Row():
                    type_in = gr.inputs.Radio(['Keypose', 'Image'], type="value", default='Image', label='Input Types\n (You can input an image or a keypose map)')
                    fix_sample = gr.inputs.Radio(['True', 'False'], type="value", default='False', label='Fix Sampling\n (Fix the random seed to produce a fixed output)')
                run_button = gr.Button(label="Run")
                con_strength = gr.Slider(label="Controling Strength (The guidance strength of the keypose to the result)", minimum=0, maximum=1, value=1, step=0.1)
                scale = gr.Slider(label="Guidance Scale (Classifier free guidance)", minimum=0.1, maximum=30.0, value=7.5, step=0.1)
                base_model = gr.inputs.Radio(['sd-v1-4.ckpt', 'anything-v4.0-pruned.ckpt'], type="value", default='sd-v1-4.ckpt', label='The base model you want to use')
            with gr.Column():
                result = gr.Gallery(label='Output', show_label=False, elem_id="gallery").style(grid=2, height='auto')
        ips = [input_img, type_in, prompt, neg_prompt, pos_prompt, fix_sample, scale, con_strength, base_model]
        run_button.click(fn=process, inputs=ips, outputs=[result])
    return demo

def create_demo_openpose(process):
    with gr.Blocks() as demo:
        with gr.Row():
            gr.Markdown('## T2I-Adapter (Openpose)')
        with gr.Row():
            with gr.Column():
                input_img = gr.Image(source='upload', type="numpy")
                prompt = gr.Textbox(label="Prompt")
                neg_prompt = gr.Textbox(label="Negative Prompt",
                value='ugly, tiling, poorly drawn hands, poorly drawn feet, poorly drawn face, out of frame, extra limbs, disfigured, deformed, body out of frame, bad anatomy, watermark, signature, cut off, low contrast, underexposed, overexposed, bad art, beginner, amateur, distorted face')
                pos_prompt = gr.Textbox(label="Positive Prompt",
                value = 'crafted, elegant, meticulous, magnificent, maximum details, extremely hyper aesthetic, intricately detailed')
                with gr.Row():
                    type_in = gr.inputs.Radio(['Openpose', 'Image'], type="value", default='Image', label='Input Types\n (You can input an image or a openpose map)')
                    fix_sample = gr.inputs.Radio(['True', 'False'], type="value", default='False', label='Fix Sampling\n (Fix the random seed to produce a fixed output)')
                run_button = gr.Button(label="Run")
                con_strength = gr.Slider(label="Controling Strength (The guidance strength of the openpose to the result)", minimum=0, maximum=1, value=1, step=0.1)
                scale = gr.Slider(label="Guidance Scale (Classifier free guidance)", minimum=0.1, maximum=30.0, value=7.5, step=0.1)
                base_model = gr.inputs.Radio(['sd-v1-4.ckpt', 'anything-v4.0-pruned.ckpt'], type="value", default='sd-v1-4.ckpt', label='The base model you want to use')
            with gr.Column():
                result = gr.Gallery(label='Output', show_label=False, elem_id="gallery").style(grid=2, height='auto')
        ips = [input_img, type_in, prompt, neg_prompt, pos_prompt, fix_sample, scale, con_strength, base_model]
        run_button.click(fn=process, inputs=ips, outputs=[result])
    return demo

def create_demo_sketch(process):
    with gr.Blocks() as demo:
        with gr.Row():
            gr.Markdown('## T2I-Adapter (Sketch)')
        with gr.Row():
            with gr.Column():
                input_img = gr.Image(source='upload', type="numpy")
                prompt = gr.Textbox(label="Prompt")
                neg_prompt = gr.Textbox(label="Negative Prompt",
                value='ugly, tiling, poorly drawn hands, poorly drawn feet, poorly drawn face, out of frame, extra limbs, disfigured, deformed, body out of frame, bad anatomy, watermark, signature, cut off, low contrast, underexposed, overexposed, bad art, beginner, amateur, distorted face')
                pos_prompt = gr.Textbox(label="Positive Prompt",
                value = 'crafted, elegant, meticulous, magnificent, maximum details, extremely hyper aesthetic, intricately detailed')
                with gr.Row():
                    type_in = gr.inputs.Radio(['Sketch', 'Image'], type="value", default='Image', label='Input Types\n (You can input an image or a sketch)')
                    color_back = gr.inputs.Radio(['White', 'Black'], type="value", default='Black', label='Color of the sketch background\n (Only work for sketch input)')
                run_button = gr.Button(label="Run")
                con_strength = gr.Slider(label="Controling Strength (The guidance strength of the sketch to the result)", minimum=0, maximum=1, value=0.4, step=0.1)
                scale = gr.Slider(label="Guidance Scale (Classifier free guidance)", minimum=0.1, maximum=30.0, value=7.5, step=0.1)
                fix_sample = gr.inputs.Radio(['True', 'False'], type="value", default='False', label='Fix Sampling\n (Fix the random seed)')
                base_model = gr.inputs.Radio(['sd-v1-4.ckpt', 'anything-v4.0-pruned.ckpt'], type="value", default='sd-v1-4.ckpt', label='The base model you want to use')
            with gr.Column():
                result = gr.Gallery(label='Output', show_label=False, elem_id="gallery").style(grid=2, height='auto')
            ips = [input_img, type_in, color_back, prompt, neg_prompt, pos_prompt, fix_sample, scale, con_strength, base_model]
        run_button.click(fn=process, inputs=ips, outputs=[result])
    return demo

def create_demo_canny(process):
    with gr.Blocks() as demo:
        with gr.Row():
            gr.Markdown('## T2I-Adapter (Canny)')
        with gr.Row():
            with gr.Column():
                input_img = gr.Image(source='upload', type="numpy")
                prompt = gr.Textbox(label="Prompt")
                neg_prompt = gr.Textbox(label="Negative Prompt",
                value='ugly, tiling, poorly drawn hands, poorly drawn feet, poorly drawn face, out of frame, extra limbs, disfigured, deformed, body out of frame, bad anatomy, watermark, signature, cut off, low contrast, underexposed, overexposed, bad art, beginner, amateur, distorted face')
                pos_prompt = gr.Textbox(label="Positive Prompt",
                value = 'crafted, elegant, meticulous, magnificent, maximum details, extremely hyper aesthetic, intricately detailed')
                with gr.Row():
                    type_in = gr.inputs.Radio(['Canny', 'Image'], type="value", default='Image', label='Input Types\n (You can input an image or a canny map)')
                    color_back = gr.inputs.Radio(['White', 'Black'], type="value", default='Black', label='Color of the canny background\n (Only work for canny input)')
                run_button = gr.Button(label="Run")
                con_strength = gr.Slider(label="Controling Strength (The guidance strength of the canny to the result)", minimum=0, maximum=1, value=1, step=0.1)
                scale = gr.Slider(label="Guidance Scale (Classifier free guidance)", minimum=0.1, maximum=30.0, value=7.5, step=0.1)
                fix_sample = gr.inputs.Radio(['True', 'False'], type="value", default='False', label='Fix Sampling\n (Fix the random seed)')
                base_model = gr.inputs.Radio(['sd-v1-4.ckpt', 'anything-v4.0-pruned.ckpt'], type="value", default='sd-v1-4.ckpt', label='The base model you want to use')
            with gr.Column():
                result = gr.Gallery(label='Output', show_label=False, elem_id="gallery").style(grid=2, height='auto')
            ips = [input_img, type_in, color_back, prompt, neg_prompt, pos_prompt, fix_sample, scale, con_strength, base_model]
        run_button.click(fn=process, inputs=ips, outputs=[result])
    return demo

def create_demo_color_sketch(process):
    with gr.Blocks() as demo:
        with gr.Row():
            gr.Markdown('## T2I-Adapter (Color + Sketch)')
        with gr.Row():
            with gr.Column():
                with gr.Row():
                    input_img_sketch = gr.Image(source='upload', type="numpy", label='Sketch guidance')
                    input_img_color = gr.Image(source='upload', type="numpy", label='Color guidance')
                prompt = gr.Textbox(label="Prompt")
                neg_prompt = gr.Textbox(label="Negative Prompt",
                value='ugly, tiling, poorly drawn hands, poorly drawn feet, poorly drawn face, out of frame, extra limbs, disfigured, deformed, body out of frame, bad anatomy, watermark, signature, cut off, low contrast, underexposed, overexposed, bad art, beginner, amateur, distorted face')
                pos_prompt = gr.Textbox(label="Positive Prompt",
                value = 'crafted, elegant, meticulous, magnificent, maximum details, extremely hyper aesthetic, intricately detailed')
                type_in_color = gr.inputs.Radio(['ColorMap', 'Image'], type="value", default='Image', label='Input Types of Color\n (You can input an image or a color map)')
                with gr.Row():
                    type_in = gr.inputs.Radio(['Sketch', 'Image'], type="value", default='Image', label='Input Types of Sketch\n (You can input an image or a sketch)')
                    color_back = gr.inputs.Radio(['White', 'Black'], type="value", default='Black', label='Color of the sketch background\n (Only work for sketch input)')
                with gr.Row():
                    w_sketch = gr.Slider(label="Sketch guidance weight", minimum=0, maximum=2, value=1.0, step=0.1)
                    w_color = gr.Slider(label="Color guidance weight", minimum=0, maximum=2, value=1.2, step=0.1)
                run_button = gr.Button(label="Run")
                con_strength = gr.Slider(label="Controling Strength (The guidance strength of the sketch to the result)", minimum=0, maximum=1, value=0.4, step=0.1)
                scale = gr.Slider(label="Guidance Scale (Classifier free guidance)", minimum=0.1, maximum=30.0, value=7.5, step=0.1)
                fix_sample = gr.inputs.Radio(['True', 'False'], type="value", default='False', label='Fix Sampling\n (Fix the random seed)')
                base_model = gr.inputs.Radio(['sd-v1-4.ckpt', 'anything-v4.0-pruned.ckpt'], type="value", default='sd-v1-4.ckpt', label='The base model you want to use')
            with gr.Column():
                result = gr.Gallery(label='Output', show_label=False, elem_id="gallery").style(grid=3, height='auto')
            ips = [input_img_sketch, input_img_color, type_in, type_in_color, w_sketch, w_color, color_back, prompt, neg_prompt, pos_prompt, fix_sample, scale, con_strength, base_model]
        run_button.click(fn=process, inputs=ips, outputs=[result])
    return demo

def create_demo_style_sketch(process):
    with gr.Blocks() as demo:
        with gr.Row():
            gr.Markdown('## T2I-Adapter (Style + Sketch)')
        with gr.Row():
            with gr.Column():
                with gr.Row():
                    input_img_sketch = gr.Image(source='upload', type="numpy", label='Sketch guidance')
                    input_img_style = gr.Image(source='upload', type="numpy", label='Style guidance')
                prompt = gr.Textbox(label="Prompt")
                neg_prompt = gr.Textbox(label="Negative Prompt",
                value='ugly, tiling, poorly drawn hands, poorly drawn feet, poorly drawn face, out of frame, extra limbs, disfigured, deformed, body out of frame, bad anatomy, watermark, signature, cut off, low contrast, underexposed, overexposed, bad art, beginner, amateur, distorted face')
                pos_prompt = gr.Textbox(label="Positive Prompt",
                value = 'crafted, elegant, meticulous, magnificent, maximum details, extremely hyper aesthetic, intricately detailed')
                with gr.Row():
                    type_in = gr.inputs.Radio(['Sketch', 'Image'], type="value", default='Image', label='Input Types of Sketch\n (You can input an image or a sketch)')
                    color_back = gr.inputs.Radio(['White', 'Black'], type="value", default='Black', label='Color of the sketch background\n (Only work for sketch input)')
                run_button = gr.Button(label="Run")
                con_strength = gr.Slider(label="Controling Strength (The guidance strength of the sketch to the result)", minimum=0, maximum=1, value=1, step=0.1)
                scale = gr.Slider(label="Guidance Scale (Classifier free guidance)", minimum=0.1, maximum=30.0, value=7.5, step=0.1)
                fix_sample = gr.inputs.Radio(['True', 'False'], type="value", default='False', label='Fix Sampling\n (Fix the random seed)')
                base_model = gr.inputs.Radio(['sd-v1-4.ckpt', 'anything-v4.0-pruned.ckpt'], type="value", default='sd-v1-4.ckpt', label='The base model you want to use')
            with gr.Column():
                result = gr.Gallery(label='Output', show_label=False, elem_id="gallery").style(grid=2, height='auto')
            ips = [input_img_sketch, input_img_style, type_in, color_back, prompt, neg_prompt, pos_prompt, fix_sample, scale, con_strength, base_model]
        run_button.click(fn=process, inputs=ips, outputs=[result])
    return demo

def create_demo_color(process):
    with gr.Blocks() as demo:
        with gr.Row():
            gr.Markdown('## T2I-Adapter (Color)')
        with gr.Row():
            with gr.Column():
                input_img = gr.Image(source='upload', type="numpy", label='Color guidance')
                prompt = gr.Textbox(label="Prompt")
                neg_prompt = gr.Textbox(label="Negative Prompt",
                value='ugly, tiling, poorly drawn hands, poorly drawn feet, poorly drawn face, out of frame, extra limbs, disfigured, deformed, body out of frame, bad anatomy, watermark, signature, cut off, low contrast, underexposed, overexposed, bad art, beginner, amateur, distorted face')
                pos_prompt = gr.Textbox(label="Positive Prompt",
                value = 'crafted, elegant, meticulous, magnificent, maximum details, extremely hyper aesthetic, intricately detailed')
                type_in_color = gr.inputs.Radio(['ColorMap', 'Image'], type="value", default='Image', label='Input Types of Color\n (You can input an image or a color map)')
                w_color = gr.Slider(label="Color guidance weight", minimum=0, maximum=2, value=1, step=0.1)
                run_button = gr.Button(label="Run")
                con_strength = gr.Slider(label="Controling Strength (The guidance strength of the sketch to the result)", minimum=0, maximum=1, value=1, step=0.1)
                scale = gr.Slider(label="Guidance Scale (Classifier free guidance)", minimum=0.1, maximum=30.0, value=7.5, step=0.1)
                fix_sample = gr.inputs.Radio(['True', 'False'], type="value", default='False', label='Fix Sampling\n (Fix the random seed)')
                base_model = gr.inputs.Radio(['sd-v1-4.ckpt', 'anything-v4.0-pruned.ckpt'], type="value", default='sd-v1-4.ckpt', label='The base model you want to use')
            with gr.Column():
                result = gr.Gallery(label='Output', show_label=False, elem_id="gallery").style(grid=2, height='auto')
            ips = [input_img, prompt, neg_prompt, pos_prompt, w_color, type_in_color, fix_sample, scale, con_strength, base_model]
        run_button.click(fn=process, inputs=ips, outputs=[result])
    return demo

def create_demo_seg(process):
    with gr.Blocks() as demo:
        with gr.Row():
            gr.Markdown('## T2I-Adapter (Segmentation)')
        with gr.Row():
            with gr.Column():
                input_img = gr.Image(source='upload', type="numpy")
                prompt = gr.Textbox(label="Prompt")
                neg_prompt = gr.Textbox(label="Negative Prompt",
                value='ugly, tiling, poorly drawn hands, poorly drawn feet, poorly drawn face, out of frame, extra limbs, disfigured, deformed, body out of frame, bad anatomy, watermark, signature, cut off, low contrast, underexposed, overexposed, bad art, beginner, amateur, distorted face')
                pos_prompt = gr.Textbox(label="Positive Prompt",
                value = 'crafted, elegant, meticulous, magnificent, maximum details, extremely hyper aesthetic, intricately detailed')
                with gr.Row():
                    type_in = gr.inputs.Radio(['Segmentation', 'Image'], type="value", default='Image', label='You can input an image or a segmentation. If you choose to input a segmentation, it must correspond to the coco-stuff')
                run_button = gr.Button(label="Run")
                con_strength = gr.Slider(label="Controling Strength (The guidance strength of the segmentation to the result)", minimum=0, maximum=1, value=1, step=0.1)
                scale = gr.Slider(label="Guidance Scale (Classifier free guidance)", minimum=0.1, maximum=30.0, value=7.5, step=0.1)
                fix_sample = gr.inputs.Radio(['True', 'False'], type="value", default='False', label='Fix Sampling\n (Fix the random seed)')
                base_model = gr.inputs.Radio(['sd-v1-4.ckpt', 'anything-v4.0-pruned.ckpt'], type="value", default='sd-v1-4.ckpt', label='The base model you want to use')
            with gr.Column():
                result = gr.Gallery(label='Output', show_label=False, elem_id="gallery").style(grid=2, height='auto')
            ips = [input_img, type_in, prompt, neg_prompt, pos_prompt, fix_sample, scale, con_strength, base_model]
        run_button.click(fn=process, inputs=ips, outputs=[result])
    return demo

def create_demo_depth(process):
    with gr.Blocks() as demo:
        with gr.Row():
            gr.Markdown('## T2I-Adapter (Depth)')
        with gr.Row():
            with gr.Column():
                input_img = gr.Image(source='upload', type="numpy")
                prompt = gr.Textbox(label="Prompt")
                neg_prompt = gr.Textbox(label="Negative Prompt",
                value='ugly, tiling, poorly drawn hands, poorly drawn feet, poorly drawn face, out of frame, extra limbs, disfigured, deformed, body out of frame, bad anatomy, watermark, signature, cut off, low contrast, underexposed, overexposed, bad art, beginner, amateur, distorted face')
                pos_prompt = gr.Textbox(label="Positive Prompt",
                value = 'crafted, elegant, meticulous, magnificent, maximum details, extremely hyper aesthetic, intricately detailed')
                with gr.Row():
                    type_in = gr.inputs.Radio(['Depth', 'Image'], type="value", default='Image', label='You can input an image or a depth map')
                run_button = gr.Button(label="Run")
                con_strength = gr.Slider(label="Controling Strength (The guidance strength of the depth map to the result)", minimum=0, maximum=1, value=1, step=0.1)
                scale = gr.Slider(label="Guidance Scale (Classifier free guidance)", minimum=0.1, maximum=30.0, value=7.5, step=0.1)
                fix_sample = gr.inputs.Radio(['True', 'False'], type="value", default='False', label='Fix Sampling\n (Fix the random seed)')
                base_model = gr.inputs.Radio(['sd-v1-4.ckpt', 'anything-v4.0-pruned.ckpt'], type="value", default='sd-v1-4.ckpt', label='The base model you want to use')
            with gr.Column():
                result = gr.Gallery(label='Output', show_label=False, elem_id="gallery").style(grid=2, height='auto')
            ips = [input_img, type_in, prompt, neg_prompt, pos_prompt, fix_sample, scale, con_strength, base_model]
        run_button.click(fn=process, inputs=ips, outputs=[result])
    return demo

def create_demo_depth_keypose(process):
    with gr.Blocks() as demo:
        with gr.Row():
            gr.Markdown('## T2I-Adapter (Depth & Keypose)')
        with gr.Row():
            with gr.Column():
                with gr.Row():
                    input_img_depth = gr.Image(source='upload', type="numpy", label='Depth guidance')
                    input_img_keypose = gr.Image(source='upload', type="numpy", label='Keypose guidance')

                prompt = gr.Textbox(label="Prompt")
                neg_prompt = gr.Textbox(label="Negative Prompt",
                value='ugly, tiling, poorly drawn hands, poorly drawn feet, poorly drawn face, out of frame, extra limbs, disfigured, deformed, body out of frame, bad anatomy, watermark, signature, cut off, low contrast, underexposed, overexposed, bad art, beginner, amateur, distorted face')
                pos_prompt = gr.Textbox(label="Positive Prompt",
                value = 'crafted, elegant, meticulous, magnificent, maximum details, extremely hyper aesthetic, intricately detailed')
                with gr.Row():
                    type_in_depth = gr.inputs.Radio(['Depth', 'Image'], type="value", default='Image', label='You can input an image or a depth map')
                    type_in_keypose = gr.inputs.Radio(['Keypose', 'Image'], type="value", default='Image', label='You can input an image or a keypose map (mmpose style)')
                with gr.Row():
                    w_depth = gr.Slider(label="Depth guidance weight", minimum=0, maximum=2, value=1.0, step=0.1)
                    w_keypose = gr.Slider(label="Keypose guidance weight", minimum=0, maximum=2, value=1.5, step=0.1)
                run_button = gr.Button(label="Run")
                con_strength = gr.Slider(label="Controling Strength (The guidance strength of the multi-guidance to the result)", minimum=0, maximum=1, value=1, step=0.1)
                scale = gr.Slider(label="Guidance Scale (Classifier free guidance)", minimum=0.1, maximum=30.0, value=7.5, step=0.1)
                fix_sample = gr.inputs.Radio(['True', 'False'], type="value", default='False', label='Fix Sampling\n (Fix the random seed)')
                base_model = gr.inputs.Radio(['sd-v1-4.ckpt', 'anything-v4.0-pruned.ckpt'], type="value", default='sd-v1-4.ckpt', label='The base model you want to use')
            with gr.Column():
                result = gr.Gallery(label='Output', show_label=False, elem_id="gallery").style(grid=3, height='auto')
            ips = [input_img_depth, input_img_keypose, type_in_depth, type_in_keypose, w_depth, w_keypose, prompt, neg_prompt, pos_prompt, fix_sample, scale, con_strength, base_model]
        run_button.click(fn=process, inputs=ips, outputs=[result])
    return demo

def create_demo_draw(process):
    with gr.Blocks() as demo:
        with gr.Row():
            gr.Markdown('## T2I-Adapter (Hand-free drawing)')
        with gr.Row():
            with gr.Column():
                create_button = gr.Button(label="Start", value='Hand-free drawing')
                input_img = gr.Image(source='upload', type="numpy",tool='sketch')
                create_button.click(fn=create_map, outputs=[input_img], queue=False)
                prompt = gr.Textbox(label="Prompt")
                neg_prompt = gr.Textbox(label="Negative Prompt",
                value='ugly, tiling, poorly drawn hands, poorly drawn feet, poorly drawn face, out of frame, extra limbs, disfigured, deformed, body out of frame, bad anatomy, watermark, signature, cut off, low contrast, underexposed, overexposed, bad art, beginner, amateur, distorted face')
                pos_prompt = gr.Textbox(label="Positive Prompt",
                value = 'crafted, elegant, meticulous, magnificent, maximum details, extremely hyper aesthetic, intricately detailed')
                run_button = gr.Button(label="Run")
                con_strength = gr.Slider(label="Controling Strength (The guidance strength of the sketch to the result)", minimum=0, maximum=1, value=0.4, step=0.1)
                scale = gr.Slider(label="Guidance Scale (Classifier free guidance)", minimum=0.1, maximum=30.0, value=7.5, step=0.1)
                fix_sample = gr.inputs.Radio(['True', 'False'], type="value", default='False', label='Fix Sampling\n (Fix the random seed)')
                base_model = gr.inputs.Radio(['sd-v1-4.ckpt', 'anything-v4.0-pruned.ckpt'], type="value", default='sd-v1-4.ckpt', label='The base model you want to use')
            with gr.Column():
                result = gr.Gallery(label='Output', show_label=False, elem_id="gallery").style(grid=2, height='auto')
            ips = [input_img, prompt, neg_prompt, pos_prompt, fix_sample, scale, con_strength, base_model]
        run_button.click(fn=process, inputs=ips, outputs=[result])
    return demo