import gradio as gr import torch from beeper_model import BeeperRoseGPT, generate # assumed modular split from tokenizers import Tokenizer from huggingface_hub import hf_hub_download # ---------------------------- # 🔧 Load Model and Tokenizer # ---------------------------- config = { "context": 512, "vocab_size": 8192, "dim": 512, "n_heads": 8, "n_layers": 6, "mlp_ratio": 4.0, "temperature": 0.9, "top_k": 40, "top_p": 0.9, "repetition_penalty": 1.1, "presence_penalty": 0.6, "frequency_penalty": 0.0, "tokenizer_path": "beeper.tokenizer.json" } device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # Load weights from Hugging Face repo if not available locally repo_id = "AbstractPhil/beeper-rose-tinystories-6l-512d-ctx512" model_file = hf_hub_download(repo_id=repo_id, filename="beeper_final.safetensors") tokenizer_file = hf_hub_download(repo_id=repo_id, filename="tokenizer.json") infer = BeeperRoseGPT(config).to(device) infer.load_state_dict(torch.load(model_file, map_location=device)) infer.eval() tok = Tokenizer.from_file(tokenizer_file) # ---------------------------- # 💬 Gradio Chat Wrapper # ---------------------------- def beeper_reply(message, history, temperature, top_k, top_p): prompt = "\n".join([f"User: {h[0]}\nBeeper: {h[1]}" for h in history if h[0] and h[1]]) prompt += f"\nUser: {message}\nBeeper:" out = generate( model=infer, tok=tok, cfg=config, prompt=prompt, max_new_tokens=128, temperature=temperature, top_k=top_k, top_p=top_p, repetition_penalty=config["repetition_penalty"], presence_penalty=config["presence_penalty"], frequency_penalty=config["frequency_penalty"], device=device, detokenize=True ) yield out # ---------------------------- # 🖼️ Interface # ---------------------------- demo = gr.ChatInterface( beeper_reply, additional_inputs=[ gr.Slider(0.1, 1.5, value=0.9, step=0.1, label="Temperature"), gr.Slider(1, 100, value=40, step=1, label="Top-k"), gr.Slider(0.1, 1.0, value=0.9, step=0.05, label="Top-p"), ], chatbot=gr.Chatbot(label="Hello I'm Beeper (Rose-based LLM)! Please be friendly I don't know very much yet!") ) if __name__ == "__main__": demo.launch()